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- .High speed scalar processing is an essential characteristic of high performance gen-

eral purpose computer systems. Efficient concurrent execution of scalar code is diftult.

due to data dependencies and conditional branches. This thesis proposes a code schedul-

ing heuristic called the decision tree scheduling (DTS) technique for general scalar code.

- and an optimal code scheduling algorithm called the simple loop scheduling (SLS) algo-

" rithm for a restricted class of innermost loops. Also proposed is a highly concurrent

machine architecture that takes advantage of these scheduling techniques.

The DTS technique performs extensive code rearrangement over a complex of basic

blocks to achieve high levels of speedup. This technique is based on a software imple-

mentation of well-known hardware speedup techniques for instruction pipelines.

including out-of-order execution, branch prediction, and branch lookahead with condi-

tional execution. To support the DTS technique we propose an architectural concept

called guarded Instructions. Guarded store instructions enhance a compiler's ability to

reorder loads and stores so as to increase the level of concurrency. Guarded jump

instructions allow the execution of conditional branches to be overlapped, thereby

significantly reducing the average branch time. Performance evaluation of the DTS

technique based on realistic but problematic workloads drawn from the UNIX kernel

and other sources are presented.
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IThe SIS algorithm exploits the regular structure of simple innermost loops to gen-

" erate optimal throughput loop code. This approach is an adaptation and extension of

the theory on optimal design of hardware pipelines. This algorithm is shown to be of

Loptimal complexity. and highly eMcient in practice. Related issues of register assign-

ment and branch handling are discussed and resolved.

The proposed scheduling techniques are most useful for highly concurrent archi-

tectures. both parallelism and pipelining can be exploited efficiently. A tightly coupled

heterogeneous multiprocessor with appropriate support for the DTS and SIS techniques

is presented. This multiprocessor can be implemented using currently available tech-

.. nology. and is suffiently flexible to accommodate both general purpose processors and

" - specialized functional units, with an appropriate mix of parallelism and pipelining.

System configurations can be adapted to resolve cost-perfornance tradeoffs for particu-

lar applications and technologies.
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NTRODUCTON

1.1. Motivation and Research Objetive

There is unquestionably a need for high-speed general-purpose computer systems:

the range of applications handled by computers as well as the volume of data processed

by computers is continuously increasing. Advances in circuit technology have resulted

in dramatic performance improvements. However, circuit technology advances alone

have proven insufcient in satisfying the increasing demand for higher performance.

By providing a high degree of concurrency through parallelism and pipelining,

modern supercomputers are capable of delivering significantly higher performance for

" -applications dominated by numerical computations. In contrast, the extensive use of

concurrency to achieve higher performance for applications dominated by nonnumeric

or symbolic computations has met with only limited s'zccs .

The objective of this research is to investigate new techniques that use con-

currency to improve the performance of nonnumeric/symbolic computation-intensive

applications. The approach taken by this research is an integrated design philosophy in

which the machine organization and instruction set architecture are developed in con-

" junction with the development of the compiler's code generation strategy.

-. 1.2. Overview of this Work
' • .'

. .This work is concerned with achieving highly concurrent processing of scalar code,

i.e. code without vector instructions. Concurrency is most easily obtained for code that

is readily vectorizable. Inherently scalar code. i.e. code that cannot be vectorized.

l
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causes severe performance degradation in most concurrent machines. Such code occurs

to some extent in all applications and dominates in nonnumeric and symbolic applica-

tions. Inherently scalar code is often characterized by

(i) prolifc use of data-dependent conditional branches with very little computation

between successive branches, and

(ii) use of linked data structures with memory address pointers, as opposed to-array

data structures with integer indices. ."

We have developed compiler code generation techniques, architectural support features.

and a machine organization that specifically addresses the problems of highly con-

current scalar computation.

Chapter 2 focuses on the problem of conditional branches. In this chapter we pro-

pose a code generation heuristic, called the decikn tree scheduling (DTS) technique.

that performs extensive code rearrangement over a complex of basic blocks to achieve

high levels of speedup. The DTS technique is based on a software implementation of
weil-known hardware speedup technique for instruction pipelines, including out-of-

order execution, branch prediction, and branch lookahead with conditional execution.

To support the DIS technique we propose an architectural concept called g rd d

instructions. Guarded store instructions enhance a compiler's ability to reorder loads

and stores, thus increasing the average level of concurrency. Guarded jump instructions

allow the execution of conditional branches to overlap. significantly reducing the aver-

age time per transfer of control.

The DMS technique is most useful for highly concurrent architectures: both paral-

lelism and pipelining can be exploited efficiently. We present performance evaluation of ki f
the DI'S technique based on realistic but problematic workloads drawn from the UNIX

kernel and other source.. This evaluation is performed by evaluating concurrency

....- , . _.......... ..... ,.,. .. ..-....-.......



3

. relative to a Cray-l-like scalar unit by considering a pipelined processor with similar

timing and the capability of issuing one or more instructions per clock cycle.

Chapter 3 focuses on the problem of code generation for program loops. with aI

running example that manipulates linked data structures. Because the traversal of

linked data structures introduces special problems. conventional loop-speedup tech-

niques such as vectorization and multitasking are shown to be unusable and/or less

cost-effective. In this chapter we present a code generation algorithm. called the simpe
i ",

loop sciwdulhng (SLS) algorithm, that generates throughput-optimal loop code for a class

of loops that does not contain nested conditional statementL The significance of

Sthroughput-optimal loop code is that. while the loop ia executing in steady-state. peak

performance is continuously maintained.

Chapters 2 and 3 deal primarily with compiler-based code optimization tech-

niques. These code optimization techniques were developed based on a fairly detailed

machine model. Chapter 4 describes the machine model and discusses implementation .

considerations that motivated the particular choice of machine organization. Several

machine dependent code generation issues, including the problem of register allocation.

- "are also discussed in this chapter.

The main results of this research are summarized in chapter 5. In this chapter we

,.- also present some suggestions for future research in this area.
o.

* ".+ * I.,

Lo "
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CHAPER 2

SCHEDULING SCALAR CODE

* %

7-1. Introduto,:'n

High speed scalar processing is an essential characteristic of high performance gen-

eral purpose computer systems. Pipelined instruction execution is the standard method -

for increasing scalar performance beyond performance levels achievable by fast logic

technology alone(l. 2]. Unfortunately. the potential throughput of instruction pipelines *.

is rarely achieved because scalar code usually contains many data dependencies and ' "..

conditional branches. These disrupt the smooth flow of instructions which causes the -- ,

pipeline to be underutilized, leading to performance degradation.

Many techniques have been proposed for improving the throughput of instruction

pipelines. Well known techniques include out-of-order execution[3]. branch predic-

tion[41. and branch lookahead (conditional issue of further instructions while awaiting

branch oucomes)[2]. Although effective. ipleetig the technique, via hardware ,.

increases the complexity of pipeline control and usually causes the clock cycle to be

lengthened as well. Thus the performance advantage gained by increasing the pipeline

utilization by such techniques is degraded by both an increase in coast and a reduction in .

the clock speed.

In this chapter. we propose a software implementation of these techniques. with

modest hardware support. that minimizes these disadvantages. This approach relies on

an integrated design philosophy in which the machine architecture is developed in con- h

junction with the development of the compiler's code generation strategy. This idea ;-. .-

represents an extension of similar philosophies reported in the literature for processors

.'



with very short instruction pipelines (in the range of two to four seg-

i ments)(,. 6. 7. 8. 9].

,m The ideas of this chapter naturally extend to much longer instruction pipelines

*-" and multiple-pipene parallel architectures. The potential throughput of an instruction

pipeline is increased by partitioning instruction pipeline into more segments with

finer granularity, thereby increasing the length of the pipeline but speeding up the

clock. Delivered performance rarely approaches the potentially higher instruction issue

rate of longer pipelines due to the increased difficulty of efficiently utilizing a longer

"" pipeline. The instruction set modifications, their hardware support. and the code optim-

ization techniques proposed here are most useful for such highly-concurrent scalar
.'- " ,- .-'

* - architectures.

. 2.2. Motivation for the Scalar Processing Problem

Program structure is perhaps best characterized by a program graph whose nodes

represent basic blocks and whose arcs represent control flow from block to block. A

basic block is a mrim-al set of instructions such that every instruction in the block is

executed exactly once each time the block is entered. Efficient concurrent execution is

-* difficult to achieve since basic blocks typically

V i) have few instructions. e.g. three to six[4. 101.

(ii) have internal data dependencies[Ill. and

0i) have a branch instruction at the end[12].

Scalar code optimization is typically performed at the block level, but little optimiza-

tion can be performed with few instructions. Data dependencies limit concurrency in

pipelines. Branch instructions have embedded dependencies in the tests for conditional

... .: branches and create delay or uncertainty in selecting the next block for execution.

,- ..--
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Thus effective optimization techniques must consider a complex of multiple

blocks. A convenient representation of such a complex is a decision tree. Without loss

of generality, we consider binary decision trees of basic blocks, where each interior

block terminates in a two-way conditional branch and each exterior block terminates in

an unconditional branch to the root of another decision tree.

Consider the binary decision tree shown in figure 2.1. written in the language C.

This simple example is representative of many nonnumeric programs in that conditional

struct {
int A. B. C:

if(x-*A <-1)1if(x...B <-S){ "_

y -'C - 10:
goto Z:

)elme
x-C - 9:
goto Y;

lelsel
if(y--A <-2)(

x -'C -7;
goto X:

}else{
x-B - 3:
if(y-B <-4){

y-C -6:
goto W:

lelsef
X -C -.5:
goto V:

Fipure 2.1. Example of decision tree in source language.

. . . . . . . . . .~ -.J..i- ,..-,



statements are frequently nested and assimg=ent statements are extremely simple.

Although in this example the leaves of the decision tree terminate in goto statements.

*. they could also represent procedure calls.

,- In order to discuss performance issues, this source level program fragment must be

compiled into machine language. We chose to use a load/store architec-

* .ture(l. 5. 6.7. 8, 9] because. by explicitly separating memory references from computa-

• -" tions. the compiler has greater flexibility in rearranging instructions to improve pipeline

utilization. We also chose to avoid conditional codes by using comparison instructions

4 that produce a boolean value in a regiter[71. thereby eliminating the constraint that the

comparison instruction must immediately precede the conditional branch instruction

that uses its result.

An assembly language representation of this program fragment is shown in

figure 2.2. Loads are shown as a -- A(x)' where the address is specified by base

a a- AWz)
b -al
C: if( b jmp

* - d -A(y) q -B()
e - *.d 2 r -q 48
f :if(e )jump ps: if(r )jump--

g: B(x) 3 o: C()- 7 t: C(x) - 9 V: C(y)- 10
h - B(y) P:gSoto X U~:Soto Y W:gSoto Z

S . -h 44
S.j: if ) p-( i jump

: C .- 5 m: C(y) -6
:. L:goto V n: goto W

- * Figure 2.2. Assembly language level representation of decision tree.

-. "5

........- 1

: --: ." -" .' : -" ." -: ' ': " .?-7 ".- '.'- .-- .-. , '-' -. -- ': .': .': .'.' : -'2 -" ": ,": ---. -, --, " ." .. .: " .. " -: '-.- -'- -2 -.: - .- ,- --.. .- .- ., -. -: -- --. -. ) " -' ' ,: ' U .: .i -,i -
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register x with displacement A and the content is placed in temporary register a. Simi-

larly. stores are shown as "C(x) .- 5". Comparisons are shown as -b - a 4 1- where

b receives the boolean result of the a 4 1 test. Conditional branches on boolean values
are shown as **if( b ) jump" where the destination of a taken branch is shown by a line. -

Labels, such as -c:- in the first branch instruction. have been given so that every

instruction can be identified either by the result register name or by the label. This

notation facilitates understanding of code rearrangements in later examples.

Suppose this code was optimized to run on a machine with a very short instruction

pipeline such as the RISC-i microprocessor[6]. This microprocessor performs a load or

delayed branch instruction in two cycles and all other instructions in one cycle. Fig-

ure 2.3 shows the execution schedule of the example program on this machine. In this

figure the time in clock cycles appears at the left. The completion time for each path

through the decision tree is given by the issue time of the pseudo-instruction

0 a - A~x)
1 d - ACy)
2 b.-a 1
3 c: if( b )jump
4 e -d 42
5 f :if( )jum p-p -BWx
6
7 g: BW)- 3 P: gotoX r -q 48
8 h -B(y) o: C(x) - 7 s: if( r ) jump--
9 -done -
10 i -h 14 U:gotoY w:goto Z
11 j: if(i )jump- t: Cx) - 9 v: Cy) -10
12 * -done - -don. -
13 1: goto V n: goto W
14 k: C(x) - 5 m: C(y)-6 
15 -done - -don. -

Figure 2.3. Optimum execution schedule for short instruction pipeline.

-... . - .-. -* ".- . .. ....2.. . . .-.- ... .:... .. . . . .__.. ..._-_.. ..___.-.._-.....___-..._._, -._. ....- ......... .-.
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"-done-". Note that a two cycle load instruction, such as d, can be overlapped with

another unrelated instruction. b. The load instruction h, however. is followed only by
instructions that depend directly or indirectly on the result of the load; thus no instruc-

tion can be be overlapped with h and a no-operation instruction. 0. must be inserted.

L" The RISC-1 micropocssr uses delayed branches with length one. In general, a

* delayed branch with length n means that the n instructions following a branch are

P .always executed regardless of whether the branch is taken[13]. We call the n instruc-

tions following a branch the delayed part of that branch. Thus instruction e is in the

delayed part of branch c. Similarly. instruction I following the unconditional branch

1 is executed prior to the actual transfer of controL

The code sequence shown in figure 2.3 has been optimized to take maximum,

k b advantage of concurrency in the pipeline. The load instruction d has been moved up to

fill the delay between the load instruction a and the dependent comparison instruction

b. Similarly. the comparison instruction e has been moved up into the delayed part of

branch c. and the store instructions k, m. o , t. and v have been moved down into the

delayed part of the logically succeeding unionditional branches.

In general. the execution time through a decision tree is dependent on which path

L- is taken through the tree. If the probability of taking path i isp p and the execution

, time of path i is t,. then one measure of performance is the expected execution time

M

where M is the total number of paths ;hrough the decision tree. For figure 2.3. if each

path is equally likely, the expected execution time in cycles on a RISC-1 microprocessor

isC



1- - '7 7 --

10

E[T c] = 0.2( 15 + 15 +9 + 12+ 12) = 12.6 (docks)

For this example. relatively high utilization (few 0 cycles) in achieved when the

machine has a very short pipeline. On the other hand. short pipelines offer little con-

currency, and thus can achieve only relatively low performance. In order to quantify

achieved performance. a lower bound on the expected execution time can be derived by

assuming an infinite resource dataftow machine. Since data flow uses the assignment of

values to trigger dependent instructions. no interior jumps are needed. Thus instruc-

tions c. f, j. and s are deleted. However. since the schedule is for one decision tree -.

only. the exterior goto 's. L. n, p. u, and w . are retained. With infinite resources, per- -

formance is limited only by data dependencies. Using RISC-i timing. the execution - -:

schedule for this example on an infinite resource dataflow machine is as follows.

0 a.d.qt

2 be.r
3 g.o.p.t.u.V.w "
4 h""
5 nd of paths 3. 4. and 5 .-

6
7 kl.m.n
8
9 end of paths l and 2

The lower bound on the expected execution time is therefore

E[ LBc ] = 0.2 C 9+9+5+5+5 ) - 6.6 (docks)

The performance ratio is defined as

1
PgTRU I EL 7'zTsc] E[ LB 6.6 -52%

WWTfF 12.

Using this metric, the RISC-1 microprocessor achieves a performance level that is only

about half of the performance level theoretically possible in an infinite resource
.1*i

i %,.,



Sdataflow machine.

Suppose that in an attempt to increase the performance of the machine, the clock

- speed is increased by a factor of four, causing the instruction pipeline to become four

I L times as long. There is now a possibility of four times the concurrency. but the load

and branch instructions take eight cycles to complete while all other instructions take

four cycles. Figure 2.4 shows the execution schedule for the same example decision

- tree. The expected execution time. assuming again that all paths are equally likely, is

E[ Tp,] =0.2( 57 + 57 + 36 + 36 + 36 )=44.4 (4x cocks)

. , b.Therefore the speedup is

"4 E( T,,] ] 50.4 
"-'.-3"• SPzz IM t -4. 1.135 "'''"

wT1 W-4

I ~ and the performance ratio is

PBE( Yw] 4 E( LBjsc] 26.4
• ~ ~Pnx EL Tpjz 44 9%"'",

P . This speedup is very small in spite of the fact that figure 2.4 has been hand coded for

optimal instruction overlap. Note that the speedup calculation for lengthening the pipe-

* line by a factor of four does not take into account the overhead represented by a clock

- U: speedup of less than a factor of four due to the additional latching necessary to imple-

ment a pipeline with finer granularity[14]. For this example even a small amount of

overhead. i.e. a clock speedup of le than 3.524. will cause the speedup to become less

than one.

" "For scalar code, simply increasing the pipeline length is rarely a viable approach to

achieving higher performance. The main problem is that, because basic tlocks in scalar

code tend to be short and contain dependencies. there simply are not enough indepen-

dent instructions to make use of a high degree of concurrency.

,t -



12

0 a- AWx

I d' - (Y

2 2 -B..
3#

8 b-a 41
9 e -d 4210 r -q 4 8

12 c: if( b ) jump1 ',.-
13 9 --
20 f:if(e )jump s if(r jump

28 g: BW)- 3 P: goto X U: goto Y W: goto Z
29 h B(y) o: C(x) - 7 t: C(x) - 9 v: C(y) - 10
30 .

36 *-done - -dosw- -done-
37 i -h 44
38 * -'

41 j:if( )jump "
32 ]
49 L:gotoV n:gotoW
50 k: C(x) -5 m: C(y) -6
51-

57 -done - -done -

Figure 2.4. Optimum execution schedule for long instruction pipeline.

2.3. Architectural Support for Scalar Processing

In an instruction pipeline, no-operation cycles (.9) are inserted either by

hardware(l] or by software(8] whenever necessary to insure that data and/or control

flow dependencies are met. Some of these dependencies are "real" in the sense that they f '"l

are inherent in the program as expressed by the programmer. For example. in figure 2.4

K................................... 
.-
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the five O's at times 3-7 are necessary because of the dependency through the register a

between the instructions at times 0 and 8 and the availability of only two instructions

" "to move up into this gap. On the other hand, some dependencies are an artifact of the

I, architecture. For example, the store instruction g at time 28 will be executed whenever

neither of the branches c and f are taken. i.e. whenever b and e are both false. The

* values of b and e are actually known at time 13, but the store cannot be issued at that

time because it must wait for the branches to be completed. Early execution of store

instruction g is critical since the relatively slow load instruction h is dependent on g.

This dependency arises because the values of x and y are defined external to this deci-

sion tree and hence in general the compiler cannot determine whether x - y. Therefore

to guarantee correctness the compiler cannot allow h to be executed before g. Note

that instructions g and h can be issued in consecutive clock cycles if and only if g and

h are not dependent and if they reference different memory banks. Otherwise a

memory bank conflict occurs at time 29 and the issue of instruction h is delayed by

hardware until the conflict is resolved.

* "One way to avoid delaying a store instruction while waiting for branches to be

"* - resclved is to provide a guard expression[15] on the store instruction. A guard expres-

"4" sion is a boolean valued expression. Whenever a guard expression evaluates to false, it

inhibits writing of the final result, thereby converting the instruction being guarded

into a no-operation. We represent a guarded store instruction by

-" <store inruction > ? <guard expression >

where <guard expression > is a function of boolean results generated by previously

executed comparison instructions. For example. the store instruction g could be

Schanged to the guarded store

g: BCx) - 3 ? eaf

... . ... .



14 ,

The guarded store. g. can now be moved into the delayed part of branch c at time 13,

followed by instruction h at time 14. Similarly, jump and goto instructions can be

guarded and moved up. Conditional branches can be converted to guarded jumps. and

other variables can be added to the guard expression. Note that loads. comparisons, and

computation instructions need not be guarded. provided that a suffcient number of

registers exists.

By making use of guarded stores and guarded jumps. the decision tree shown in

figure 2.4 can be further improved to yield the schedule shown in figure 2.5. Note that

once the delayed part of a branch has been completed, subsequent guard expressions

need not test the value that determined the outcome of that branch. For example.

instruction o is executed if e&S is true. However, since the delayed part of branch c is

completed at time 19. the compiler uses the fact that if control flows to instruction o.

then b =0 so there is no need to include the 5*term in the guard expression for instruc-

tion o. Similarly. & =1 is known if control flows to instructions t and v. Since the

delayed part of branch f is completed at time 22. no later instructions need use e in

their guard expressions.

The operation of the pipeline for the time interval 19 to 30 is shown in figure 2.6.

In this figure. instructions flow through the pipeline from top to bottom. Lower case

letters represent instructions from figure 2.5. Upper case letters with subscripts, such

as Xk- represent the kth instruction after the label X of a goto instruction. A blank

entry is used to indicate a ~-instruction.

Figure 2.6(a) shows the pipeline operation when path 3 of the decision tree is

taken. Referring to pipeline segment 8. primed instructions, such as c', indicate a guard

expression that evaluates to. false. Each of these instructions is converted into no-

operation by the hardware. Instructions in parenthesis. such as (h) are fully executed.



0 a -A(x)
1 d-A(y)
2 q - BWx
3

8 b -a 1
9 e -d 42
10 r -q 4<8
11
12 c: jump ? b
13 g: B(x) - 3 ? &
14 h - B(y)
15 f jump ?E&
16 s: jump ?r&b
17 p:gotoX ? e&"
18 u : goto Y ? r&b
19 w:gotoZ ? r&b
20 o:C(x) - t:C(x) -9?r
21 v: C(y) 10? r
22 i -h 4323 0
24 0
25 0 -done -
26 j: jump ? i -done-
27 1:gotoV ? 9" -done -
28 n:gotoW ? i
29 k: C(x) -5 ?
30 m: C(y) -6? i
31 *

35 -done-
36 -dame-

Figure 2.5. Improved schedule using guarded store and jump instructions.

but are of no use to this path. Note that instructions g'. (i). and o on path 3 complete

early because they are four-cycle instructions.

Figure 2.6(b) shows the pipeline operation when path 5 is taken. Note that

although the same set of instructions as for path 3 are completed at segment 8 between

*' ".. times 19 and 26. their guard expression values are different and hence a different set of

1. . -
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PIPELINE TIME
SEGMENT 19 20 21 22 23 24 25 26 27 28 29 30=!

I W 0 X 0  X1 X2 X3 X 4  X S rxou xoi X x2  x, x4  x
2 u w 0 XO X1 X2 X3 X

3 P u w 0 C X) Xo X2 X3

5 f S , u w X0 X,

6 h f s p u w X0
7 h f j p u w
8 c (h) f s p u

(a) path 3 (b -0. -1)

PIPELINE TIME
SEGMENT 19 20 21 22 23 24 25 26 27 28 29 30

I w t V Zo ZI Z 2  Z 3

2 u w t v Zo ZI Z 2  "

3 p u w t v Zo Zi
. 4 s p u w £' V Zo "'

5 f S P U ,.'
6 h f s p u w
7 h f s p u w
a8 c (h) f r P U W

(b) path 5 (b -1. r -1)

Figure 2.6. Pipeline operation showing overlapped guarded jumps. '

these instructions is converted to no-operations. Once time 23 is reached instructions

exiting the pipene on the two paths are distinct. since the outcome of branch c differs

at time 19. resulting in different instructions being initiated at time 20 and these |

instructions appear at segment 4 at time 23.

From figure 2.5 it is clear that the delayed parts of branches are utilized much

more efficiently. The expected execution time and speedups using guarded instructions.

asuming equal probability paths. are

.°
i .- p-,
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E[ Tou,j]- 0.2 (35 + 36 + 25 + 26 + 27) 29.8 (4X dock)

4 E( 7",ec ] 50.4
SPouG AW=: - - 1.691

SPUAD PU E Tzm 1 44.4 -. 9

Although the achieved speedup of 1.691 relative to a 1X pipeline is still much less than

the theoretical 4X speedup. it is relatively near the data flow limit. as shown by the

performance ratio

-.- e( ow] 4 E[ LBsc ] 26.4 9

Recall that this performance ratio for a 4X pipeline without guarded instructions is

only 59%.

~ IThe amount of hardware required to evaluate guard expressions depends on the

complexity of the expressions. We have found that expressions consisting of the AND

of true and complemented values of a few register bits is adequate for supporting fast

scalar procMing. Thus very fast guard expression evaluation can be implemented inex-

pensively.

To exploit the guarded store and guarded jump instructions discussed above, it is

necessary to perform extensive code rearrangement. Constraints on code rearrangement

arise from data dependencies between instructions, hence it is critical that artificial

- dependencies are eliminated whenever possible. An important class of artificial depen-

*. dencies arise due to register reuse. In the following example, no parallelism can be

• . exploited in the code sequence on the left because the instructions forms a dependency

" '- chain.
_ !t -
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a .- x +y a -x y
b -a +z b ~a + z
* -u +v a'--u +v-
* - a +w C 4-a'+w * .. %

The code sequence on the right, however, forms two independent dependency chains and

thus execution of one chain can be overlapped with the other. The improvement in

parallelism was achieved by renaming the second assignment of register a so as to avoid

reuse. The technique of register renaming to eliminate unnecessary dependencies is well

known[16]. When applied to a tree of basic blocks, every temporary register can be

renamed so as to be assigned exactly once, the so called ngle asagnmnnt property. L

The use of single assignment temporaries gives the compiler maximum flexibility

in reordering code within a decision tree so as to utilize concurrent resources efficiently. '.

All code shown in the examples has this single assignment property. Note that in actu-

ality some register reuse can be accommodated without performance degradation. Once

a code sequence has been generated, a second pass can be made over the generated code

to locate disjoint uses of registers and map them into the same physical register. No

performance is lost by this mapping and register requirements are reduced.

Architectural support for register renaming to increase parallelism simply

involves providing a sufficiently large number of registers. Extensive code rearrange-

ment. however, poses a more serious problem. When code is moved from after a branch

to before the branch, some instructions from the conditionally taken and fall-through

paths of the branch become unconditionally executed. In this case a spurious exception

condition can occur in the rearranged code due to the execution of an inst-,ction that

would not have been executed in a serial machine.

One posible solution is to encode the exception condition within the result regis-

ter(17]. possibly by extending the length of the register. Exception conditions are pro-

pagated through subsequent computations. but the actual signaling of exception

o', . i -i .--- : -i " - --- i-.i '-- '-.' ---.- ,- ." .- i- i -,'.i-,-' - -2 .. '-i -i i- :- ,- .- "2--- -""- - - " i-':- ", i-2-i-i..i-,2.. . " 'P
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S conditions is deferred until an attempt is made to store the content of a register contain-
r5'

* ,:.. ing an exception code. With rearrangement. the set of store instructions not inhibited

by guard expressions are exactly the same as the set of stores produced by a serial exe-

cution of the program without rearrangement. Thus the signalled exceptions are the

same. The same encoding technique as for arithmetic exceptions such as divide by zero

* i can be used for illegal memory references so as to allow actions like prefetching past the

. end of an array. However this technique cannot easily be extended to page fault excep-

tions. since they may eventually have to be serviced.

Im
"  2.4. The Decision Tree Scheduling Technique

In the previous section we proposed the guarded store and guarded jump architec-

tural features. These architecture features can significantly improve scalar code perfor-

b mance. Efficient use of these features, however, requires that the compiler perform

" •extensive code rearrangement. This section describes a heuristic code generation tech-

nique that performs the necessary code rearrangement.

The main objective of the code generator is to rearrange. i.e. r.hedule. the instruc-

tionsin a decision tree so as to minimize the expected execution dme through the deci-

sion tree. The technique presented here was used to produce the schedule shown previ- "

ously in figure 2.5. A convenient representation of the program for the purpose of

instruction scheduling is the dependency graph[16]. Figure 2.7 shows the dependency

graph for the ongoing decision tree example. Instructions are shown as nodes in the

" graph. labeled with either the result register name or the explicit instruction label. Arcs

in the graph represent data or control dependencies between instructions. Within each

. node. the number on the left hand side of the center row gives the earliest time that the ON"

node can be issued. The number on the right hand side gives the execution delay of the

node. Note that the delay of jumps in the interior of the tree (c. f. J, s) have

I7:77 *o *. -* *..* .- o.l

-... *..*..*. - - - - - -
"'" . . - " . .. " '."- ' - - -" ' ,'"- '. -" % -" "-"-" ." 

"

' -". " " .- "- . " -'- ' -".~" - * ' ' ' ." " - ". '"." - ) -
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priofit
Figure 2.7. Dependency graph representation of decision tree
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execution delay +1 to allow overlapped jumps while leaf jumps (. n. p. u. w) have

delay +8 in our model since this tree must be completed before the next tree begins.

The real number at the bottom of the node is the scheduling priority, to be discussed

later.

The problem of finding a minimum delay schedule for a set of dependent tasks is

known to be NP-hard[18]. However, it is well known that list scheduling tech-

niques[19] produce good schedules in practice. We have developed a decision tree

scheduling (DTS) technique based on an extension of list scheduling. A procedure

. implementing the DTS technique is shown in figure 2.8. This procedure is initially

*,- invoked with G equal to the entire dependency graph and P equal to the set of all paths

through the decision tree from the root to a leaf node. On the initial call, nothing is

deleted from the graph in step 1 since every node in the graph lies on at least one path

.. procedure schedule( G, P)

r G: Dependency graph representing subprogram to be scheduled

P: Set of paths through subtree to be scheduled

begin

1. Delete from G those nodes and arcs not on paths in P

2. Return if G is empty

3. Schedule nodes until potential transfer of control flow

4. schedule( G, Ijump taken paths})

5. srchedulh( G. (jump not taken paths)

end.

Figure 2.8. Decision tree scheduling procedure.

__ __ _ __ _ __ _ __ _ .. .- ;"- - -:- :o
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through the tree. Step 3 schedules code in priority order subject to dependency con-

straints. Code scheduling continues until n cycles after the first interior branch has . "

been scheduled, where n is the delay of the branch. At this time two logically indepen-

dent subtaks are created to handle the two possible branch outcomes and "schedule" is

called recursively.

The first subtask is initiated with a copy of the dependency graph along with the

subset of paths through the decision tree that pertains if the jump is taken (step 4).

Similarly. the second subtask is initiated with a copy of the dependency graph and the

subset of paths that pertain if the jump is not taken (step 5).

Each subtask schedules code until n cycles after the next interior jump that

belongs to its own subset of paths. Note that this jump may have been scheduled by

the parent task in the delayed part of some earlier jump. Referring to figure 2.5. the

subtask handling the code sequence for paths (4. 5) beginning with instruction t finds

previously scheduled jump s to belong to paths 14, 51 but not jump f . since f belongs

to paths (1. 2. 31. Therefore the subtask for {4. 5 would stop code scheduling at time M

x, + n =16 + 8 =24. where x, is the issue time of instruction s and recursively

divide into two subtasks to complete paths (4) and (51 independently. Note that exte-

rior jumps (goto 's) do not terminate code scheduling in a task. The recursive division

L continues to the leaves of the decision tree. Application of this code scheduling pro- -

cedure to the dependency graph shown in figure 2.7 was used to produce the code shown

in figure 2.5.

The quality of code generated by the DTS technique is dependent on the heuristic

used to compute the node priorities. Intuitively. the node priorities should satisfy the

following pr')perties.

- . S. -. -o.
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1 (1) A node on a high probability path through the decision tree should be given higher

priority than a node on a low probability path. Since a node can be on multiple

paths. the priority of a node should depend on the sum of the path probabilities.

(2) On a given path. a node near the top of the critical path through the dependency

graph should be given higher priority than a node near the bottom of the critical

path. Also. a node not on the critical path should be given lower priority than a

, node on the critical path[20].

Property two can be quantified as follows: Focus on a single path i through the decision

A s tree. Calculate, for each node on that path. the earliest execution time based on data
k'

- dependencies. Define the path length Ii to be the earliest completion time of the termi-

nal goto instruction of path i. Sweep backward through the graph and calculate, for

i each node j.the latest time (laestj) that each node must be issued in order for the

path to be completed within the minimum time I4. Nodes on which the terminal goto

instruction does not depend have latest issue time of Ii minus the execution time of that

node. Define the urgency of a nodej on path i through the decision tree to be

-.- laest-

Figures 2.9. and 2.10 show the earliest issue time. the latest issue time, and the urgency

fo;- each node on each path through the decision tree.

Combining the urgency metric with property one gives the heuristic priority func-

| tion. For each node j. the list scheduling priority wj is given by

M

where M is the number of paths through the decision tree and Pi is the probability cf

taking path i. Application of this heuristic function to the urgency values shown in

,:: :,-:, , '...., :.... .. . .... _".. . .... ....
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* path 1 path 2

68 8

.765 76 75 765
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a
0 0 0 0

a

88 8 1
6 9 6 9955

6path 4

429 1591

42-

.- 38 .-..-.

a

4094

0 1

t L

121221 41

4551

ic

name
earlylate
Urgency

Figure 2.10. Heuristic computation for paths 3. 4. and 5.
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figures 2.9 and 2.10. where each pi is assumed to be 0.2 in this example, was used to '

provide the priority values shown in figure 2.7. *:

A significant advantage of the DTS technique is the sensitivity of the heuristic to

the values of the path probabilities. For example. if instead of being equal, the path

probabilities were (1/8. 1/8. 1/8. 1/2. 1/8). then the new node priorities would be as

shown in table 2.1. Based on these new priority values, the DTS technique would pro- -

duce the new schedule shown in figure 2.11. Note that path 4 (the high probability

path) has been shortened from 26 to 22 cycles at the expense of increasing the length of

paths 1. 2. and 3. Table 2.2 shows the expected execution time and speedup relative to i -'

the RISC-1 processor for each of the schedules under the asymmetric path probability

assumption. The RESCHED column uses the schedule in figure 2.11 and reflects the

advantage of rescheduling when path probabilities change.

Table 2.1. Node priorities for path probabilities (1/8. 1/8. 1/8. 1/2, 1/8).

fa b c d e f g h
-1.O 0.666 0.412 0.375 0.269 0.127 0.162 0.155

/k L m n o p ..
"0.082 0.066 0.000 0.029 0.000 0.029 0.006 0.048

0.597 0.369 0.256 0.023 0.182 0.006 0.046

Table 2.2. Expected execution time arid speedup for asymmetric probabilities.

RISC PIPE GUARD RESCHED

E[T] 49.500 41.250 28.375 27.000
SP: Rjc 1.200 1.744 1.833

bf =



-- .- .. -- -. --..- .-

27

,.,~ ~ a: o - AWx ..
1 q - B(x) .i .

2 d 4- A(y)

8 b'"a 1
9 r -q 8
10 e -d 2
11
12 c: jump ? b
13 s: jump ? rb
14 u: goto Y ? &b
15 g: B(x) - 3 ? E&
16 h - B(y)
17 f:jump? e&b" L,
18 p: goto X ? e.
19 w: goto Z ? r&b
20 o: C(x)- 7 ? e t: C(X) 9 ?
21 v: C(y) -10 ? r
22 -done-
23

. 24 i h 4
25 1"
26 -done-
27 -done -
28 j: jump ? i
29 l: goto V ? " -

30 n: goto W ? i
31 k: C(x) - 5 ? S'
32 m: C(y) -6 ? i
33

36
37 -done -
38 -done -

Figure 2.11. Execution schedule for path probabilities (1/8. 1/8, 1/8. 1/2, 1/8).

The sensitivity of the proposed heuristic to the actual path probability can be

viewed as a refinement of the trace scheduling teclunique(21]. which generally does not

distinguish between relatively equal path probabilities verses highly biased probabili-

I, - ...



'. -79;- 1%

..

28

I

ties. Alternatively, the DTS technique can be viewed as an extension of the IF-tree

technique proposed by Davis(22]. An F-tree is a binary decision tree transformed to

use a large multiway branch. Since a multiway branch cannot be executed until all

dependent conditions have been evaluated, exits from the decision tree cannot be made

until the last condition has been evaluated. In contrast the DTS technique takes advan-

tage of early exits out of the decision tree whenever possible.

The DTS technique can be extended to architectures that employ parallel instruc-

tion pipelines and a horizontal microcode-like instruction format so as to permit issuing

multiple instructions per clock cycle. For example. instead of increasing the RISC-1 4W

clock speed by a factor of four and hence multiplying the pipeline length by four as

shown in figure 2.5. the same level of concurrency can be achieved by multiplying the

pipeline length by two and then duplicating the pipeline. Using the same node priorities

as shown in figure 2.7. the new schedule with up to two instructions issued per cycle is

shown figure 2.12. In this figure the instructions are shown by their label and guard

expression. The top of each box represents the branch target line used in previous

figures. When the compiler generates two guarded jumps in the same clock cycle, they

must be mutually exclusive so the hardware implementation remains simple. Assum-

ing equal path probabilities, the expected execution time, speedup. and performance

ratio are

E[ TR- -- 0.2 (17 + 18 + 12 + 13 +13 )=14.6 (2x dock)

= =E[ TR1 25.2 .__
TA-R-T 14.

PE( rpA -2 2 E[ LBxs] 13.2 =P ,€ EL T A ,] 1---g' 90%."--....... T<.
~LB ~ a FT -2 14.6

This schedule with a 2x clock achieves a speedup slightly better than the 1.691 speedup

obtained by the single pipeline with a 4X clock.

ff . ..'
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0 ad

3 4
4 b -
5 r.
6 c ?b g ? &, _"_".

7 h f ? E&
8 p ? ME s ?r&b
9 u ? P&b w ? r&b

10 o ? e t ? f v ?r
11 i 4) 4) 4) 4) 4 .-

12 44)-don - 4) ) 4) )
13 j ? i I ? -done- -done-14 k ? 91 n ? i-

15 m ? 4-
16 4 4-
17 -don.- 4 4-a18 -done -

: .. Figure 2.12. Execution schedule for two instructions per cycle.

Another configuration with the same concurrency is 4 RISC-1 pipelines using a 1X-

clock. The schedule for this configuration is shown in figure 2.13. In this figure the

- . guard expressions have been omitted to save space. Again assuming equal path proba-

bilities. the expected execution time. speedup, and performance ratio are

E( TA.. 4J0.29+9+6+6+6)=7.2 (l× clock)
"i +'i E[ Tjuc ] 12.6"+"

-SP .AR = 12.6 = 1.750

PT - E LBc ] _ 6.6

PE T 1.AR 7.2 -92%

r The ability of the DTS heuristic to utilize both pipelining and parallelism efficiently -

significantly increases the flexibility of the machine organization and allows the machine

%
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0 a d q
1L

2 b e r
3 c f g s "._-_
4 h p u w
5 " -0 .t ,,v
6 i * d done done done
7 j k I n
8 M

9 done done

Figure 2.13. Execution schedule for four instructions per cycle.

designer to trade off pipelining with parallelism for greater cost-effectivenes.

2.3. Performance Evaluation

We have constructed a compiler to evaluate the performance of the DTS technique

and the guarded store and jump architectural features. This compiler accepts a subset

of the language C.

The performance evaluation is based on a pipelined uniprocesr model derived Wb

from the scalar portion of the Cray-. This baseline uniprocemr has instruction execu-

tion timing characteristics of the Cray-i computer[23. 24] with branches taking a con-

stant 14 cycles. The Cray-i branch time is actually 2.5. or 14 clocks for the cases that

the branch is not taken, taken with branch target in instruction buffer, or taken with ' '

branch target in main memory. respec.ively. The constant 14 clock assumption .. .

simplifies the baseline uniprocessor. but makes its performance somewhat lower than

the performance of the actual Cray-i on scalar code.

In this section performance is speedup relative to this baseline uniprocessor. The

target machine model consists of one or more pipelined processing elements. The

. . . . . . . . . . . . . . . ....
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processing elements are controlled by a horizontal instruction word with an instruction

field for each processing element. The timing characteristics of the processing element

are the same as that of the baseline uniproce -r.

In addition to the normal operation of code generation. our compiler also performs

selective code replication. Use of replication was motivated by the observation that

- pipeline utilization improves with larger decision trees. Natural decision trees in most

programs tend to be very small because every basic block that has more than one prede-

cessor blocks becomes the root of a distinct decision tree. For example. the program

fragment shown in figure 2.14(a) produces three decision trees. The first tree contains

blocks cI.S1.and S 2. the second tree contains blocks C2 . S 3. and S4 . and the third tree

contains the block S6 .

By replicating the second if-statement and statement S6. a single much larger deci-

sion tree can be produced as shown in figure 2.14(b). This tree consists of the 7 blocks

if (C1) S;if (C 1)
SI; S 1;

else if (c 2)

'.-if (c2) } else {.".S2; S3; S6;
else } elsel 52 "' "

if~i (C 2 2)es.- :S4: S2;

". .,S6: if (C2){
S3; S 6:

"else{
S4: S6:

(a) (b)

Figure 2.14. Use of code replication to produce larger decision trees.
t.!i:::
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cI. (S1. c2). (S3. S6). (S4.S6). (S2. c2). (S3. S6). and (S4. S6). L4

In our compiler. code replication is controlled by a parameter O. As long as a path

of a decision tree has probability greater than . an attempt is made to replicate code

further along that path until conditional branches cause the path probability to fall

below 4. This technique of weighted code replication is advantageous in that high pro-

bability subtrees of a decision tree are made deeper and larger by code replication while

low probability subtrees are kept small.

Table 2.3 shows the achieved performance for a binary search program with the

list to be searched represented as a balanced linked binary tree with integer keys. In ,.

this table. p is the number of processing elements. i.e. the number of instructions that

can be issued in parallel each clock cycle, and e is the level of code replication. Each

successive column represents code replication pas one more conditional branch.

Table 2.3 shows that relatively good speedup of 2.392 can be achieved by the DTS : -

technique with guarded operations on a uniprocessor (p =) and no code replication

(6= 1.0). Additional speedup can be achieved either by code replication (going right) or

by increasrng the level of parallelism in the machine (going down). Greater speedup can

be achieved by combining both code replication and increased parallelism. .

Table 2.3. Performance of linked binary tree search.,-'-

1 1.0 0.5 0.25 0.125 0.062 0.031 ...
1 2.392 3.116 3.477 3.695 3.782 3.895
2 2.739 3.651 4.107 4.409 4.587 4.781
3 2.831 3.881 4.409 4.707 4.953 5.137
4 2.831 4.042 4.567 4.911 5.174 5.366
00 2.831 4.141 4.896 5.388 5.733 5.989 

"
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Table 2.4 shows the achieved performance for a quicksort algorithm. Although

this algorithm is much more complex than the linked binary tree search example. simi- I.
lar speedup trends are observed. The initial (p =1. 6=1) speedup is much lower. but

Table 2.4. Performance of quicksort algorithm.

1.0 0.5 0.25 0.125 0.062 0.031
1 1.489 2.396 2.787 2.981 3.021 3.121
2 1.623 2.940 3.391 3.814 3.981 4.120
3 1.644 3.119 3.764 4.193 4.388 C.571
4 1.657 3.176 4.026 4.461 4.683 4.873

1.664 3.311 4.388 5.412 5.904 6.204

Table 2.5. Performance of vmsched~c from the UNIX kernel.

6

P 1.0 0.5 0.25 0.125 0.062
1 1.713 1.863 1.953 2.049 2.108
2 2.127 2.456 2.626 2.846 2.992
3 2.307 2.727 2.915 3.292 3.489
4 2.373 2.866 3.089 3.538 3.786

S2.431 3.028 3.456 4.177 4.658

Table 2.6. Performance of hydro excerpt from Livermore benchmarks.

p. 1.0 0.997 0.992 0.99 0.98
1 1.313 2.358 3.052 3.223 3.416
2 1.406 2.742 4.895 5.632 6.468
3 1.441 2.742 4.999 5.985 9.021
4 1.441 2.742 4.999 5.985 9.212

1.441 2.742 5.000 5.986 9.217

4
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reducing e has even higher relative payoff. Once e is reasonably low, increasing p has a
, -:, -..

much greater effect.

Both of the above examples are very small program fragments. To test the viabil-

ity of our techniques on more difficult examples. we evaluated a number of program : -"

modules from the Berkeley UNIX kernel. Table 2.5 shows the achieved performance

for the virtual memory scheduler from the UNIX kernel. Less speedup was achieved

relative to the previous examples because this program module contains many pro-

cedure calls to externally defined procedures. An external procedure call always ter-

minates a path in the decision tree since code replication cannot proceed without

knowledge of the called procedure. Hence the full power of code replication could not

be applied in this example. Nevertheless, even this example demonstrates that our

approach is capable of delivering significant speedup on branch-intensive scalar code.

We have found that our DTS compilation technique and the guarded store and

jump architectural features are very effective with parallel-pipeline hardware for vec-

torizable code as well as scalar code. Tab1 2.6 shows the achieved performance for the

first loop from the Lawrence Livermore Loops benchmarks[251. On a uniproceenor with

the loop unrolled once via code replication (p -1. a-0.997). the result is comparable to

hardware speedup techniques for scala procmors(261. Using three proceming elements

and unrolling the loop four times (p -3. e-0.98). DTS produces a speedup of 9.021 via

a schedule whose average execution time is 2.62 cycles per loop iteration. In contrast.

since the Cray-i has only a single floating-point multiply pipeline and this example uses

3 multiplications per loop iteration, the maximum Cray-i performance in vector mode

is no fewer than 3.00 cycles per loop iteration. i.e. a maximum speedup of 7.883 rela-

tive to its scalar mode performance.

.% .-.
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p CHAPTER 3

*SCHEDULNG SIMLE LOOPS FOR OPTIMAL THROUGHPUT

3.1. Introduction

In a conventional programming environment many programs spend a large frac-

tion of their execution time in looping constructs. Therefore the optimization of pro-

gram loops in order to speed up their execution time is of paramount importance in a

high performance computer system.-

Although loops can be viewed as scalar code and scheduled to achieve higher per-

formance using the decision tree scheduling (DIS) technique described in chapter 2. in

b general the DTS technique cannot deliver maximum loop performance since the DTS

technique has the restriction that a decision tree complete execution before another deci-

sion tree can begin. This strategy allows distinct trees to be scheduled independently

and was deemed necessary in order to reduce the complexity of the scheduling problem

*to a manageable level. A disadvantage of scheduling trees independently is that perfor-

mance is compromised during the transition from one tree to another. Therefore loop

performance is degraded if tree transitions occur while the loop is being executed.

By using code replication to cause loop unrolling, the number of tree transitions

- can be reduced since multiple iterations of the loop can be executed by a single decision

tree. However tree transitions can never be totally eliminated unless the loop is com-

pletely unrolled. Complete loop unrolling is rarely feasible since loop iteration limits Z-.Z

are frequently data-dependent and/or tat number of iterations is so large that complete

unrolling is impractical. Therefore in general some performance degradation is inevit-

able when loops are scheduled using the DIS technique.

e~~~~~~~~ ~~. . .. . . . ......o o',",- . **.". .. - .. "o *o, -, % " ° °-°-'**..'** ." 4 'd"o'"'"
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The structure of general loops involving nested conditional statements and pro- .'

cedure calls are quite complex. and perhaps in practice it is best to handle them using

the DTS technique in spite of the fact that tree transitions lead to suboptimal perfor-

mance. However. simple loops whose bodies consist solely of assignment statements "

have a very simple and regular structure. This structural regularity can be exploited to

unroll the loop logically and completely without actually doing so. This is the basis for

the simple loop scheduling (SLS) technique proposed in this chapter.

The DTS technique is a general technique that is applicable to any program con-

struct. The SIS technique. on the other hand, is applicable only to a restricted class of .-

loops. The advantage of the SIS technique is that it produces schedules that are -

throughput optimal. i.e. optimal performance is maintained as long as the loop continues

to iterate. Suboptimal performance occurs only when the loop starts and when it ter-

minates.

The importance of high-speed loop execution is well known. Since loop speedup

techniques depend on the machine model chosen, we begin this chapter with a brief

review of several well-known machine models. Following that. the SLS technique is

developed in several stages. beginning with simple cases.

3.2 Architectures and Loop Performance

Consider the simple loop written in the language C shown in figure 3.1. This pro-

gram fragment is representative of many nonnumeric programs in that simple loops are '..

frequently used to traverse linked data structures. The C notation

while ( <assgnen > ){ }".:

means perform the <assignment > statement as specified and retain the value that was 'i

assigned. Then if the retained value is nonzero (i.e. if the pointer is valid), initiate

° oo- o. .o o . . o . . . .. - - .- ° ,.4o . oo . '. . " ' - . oo .- . - ° ° . . . . ... ... ° • . ~ ' . o. ° ., o - o-• ° -
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-::" struct vertex { /* Graph vertex descriptor. */ .
""... /* Other fields in vertex descriptor. /I

struct arc **arc; /* Pointer to list of outbound arc descriptors. /
intdata: /* A data field of interest.S/

struct arc { /* Graph arc descriptor. /Y
. ... /* Other fields in arc descriptor. /"

struct vertex *node: /* Pointer to destination vertex. '/ .-

- int T[ ]; /* A list of indices into the following array. /'

struct{ /* List of records in an array./!
int index; /* A value used to index into the array T./
int vahue; /* An interesting data value. ..

}R]:

register struct vertex *c: /* A cursor moving through the graph. /
register inti - 0: I* A corresponding index into the array T. /.

I register intg: /* A temporary used to index into R.*/
register int k - 0: /* An accumulator of interesting values /

while (c - c -'arc[l]-node) I /* While more vertices do: *I
- g -T~c-4data + i]: /* Calculate an index into R.*/

i- Rig ].index; /* Acquire the next corresponding index.!
k - R g ].Value: /* Accumulate another interesting value.*/

Figure 3.1. Example of simple loop in source language.

another iteration of the loop body. If the retained value is zero. the loop terminates.

Note that the <assignment > statement is reexecuted at the beginning of each iteration

of the loop.

The data structures and operational characteristics of this simple loop are shown

- in figure 3.2. The top part of the figure shows a graph data structure. The graph is

traversed by following the second outbound arc from each vertex (array indices begin

with 0 in the language C). The bottom part of the figure shows a pair of related tables.

iL
...............................
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9.,

VERTEX
DESCRIPTOR

OUTrBOUND'- .
... ARC LIST ARC"

__ DESCRJIFOR

data ,... DESCRIPTOR ".*-
--------------S h-

I arc

RE

Figure 3.2. Data structures in simple loop. .

During each iteration of the loop, an index into the first array. T. is generated using an ""-

item from the current vertex in the graph. The value retrieved from table T is shifted

by the appropriate amount so as to form an offset into the second array. R. The entry

pointed to in R (an index field) is saved in i to be used during the computation of the

L" %"o"
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~~ S next index into table T. The next entry in R is the value field to be accumulated in the

variable k. The final value of k is assumed to be used eventually outside of the loop.

An assembly level representation of this simple loop is shown in figure 3.3. We

.Ihave chosen to use a load/store architecture[1. 5. 6. 7. 8.9] for reasons discussed in

chapter 2. From this low level representation of the program we can derive the depen--

dency graph shown in figure 3.4. Instructions are shown as nodes in the graph. labeled

U -with either the result register name or the explicit instruction label. Solid arcs

represent data dependencies between nodes; downward arcs specify dependencies within

a single iteration of the loop while upward arcs specify dependencies from one iteration

to the next. Dashed arcs represent control dependencies resulting from conditional

branches. The dependency graph is an appropriate representation of a program loop for

the purpose of readily viewing the constraints on code scheduling. In future examples

we shall omit the lengthly process of specifying program fragments and simply use *

only dependency graphs. .

loop: a - arc(c) Load pointer to arc pointer list.
b -- l(a) Load pointer to second arc descriptor.
c .- node(b) Load pointer to destination ot arc.
d: if ( =O) exit Terminate loop if no more vertices.
e 4- data(c) Load data field from vertex descriptor.
f -C + i Use data to offset recirculating index.
g '-T(f) Load index to array of records.
h -g << 2 Shift index to form offset.
i - R.index (h) Load new value of recirculating index. -

K j s-R.Vaue (h) Load new data value of interest.
k 4- k + j Accumulate new data value.
L: goto loop Start another iteration.

Figure 3.3. Assembly level representation of simple loop. - -

ot*

il. "
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Such a loop, executed on a wide variety of architectures, will achieve varying lev-

els of performance. In this section we compare the advantages and disadvantages of

several architectures for this kind of loop.

3.2.1. Scalar Architectures

Consider a pipelined scalar architecture such as the RISC-1 microprocessor6].

This microprocessor issues one instruction per cycle, and performs a load or delayed

branch instruction in two cycles and all other instructions in one cycle. Figure 3.5

shows a table of instruction issue times for one iteration of the loop. Entries in the

"STRUCrION ISSUED" column contains either the instruction being issued, or ' if a

data dependency prevents the next instruction from being issued in that clock period.

STIME INSTRUCTION ISSUED
• 0 a ,-arc(c )<2
'i [' ' 1 []

2 b'-1(a)
3 ,

-4 c *" node(b)
5
6 d :if (c =0) exit
7 e - data(c)

. 9 f -e +i
10 g -T(f)
11 1: goto loop
12 h -g << 2

S'.. 13 j -. valm (h)
14 i -R.index (h)
15 k k +j

Figure 3.5. Scalar processor schedule for one iteration of the loop.

k. -* .
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Note that the schedule shown in figure 3.5 has been optimized to take maximum advan-

tage of instruction overlap. To facilitate instruction overlap further, we have assumed

that delayed branches can be delayed by greater than two cycles if desired. This allows

branch instruction I to be issued at time 11, which otherwise would have been a 95

cycle. An unshown parameter within the branch instruction increases the delay and

causes the next iteration to begin at time 16.

As figure 3.5 shows, each iteration of the loop takes 16 clock cycles. Therefore the

time for a scalar RISC-I microprocessor to complete n iterations is

" TscAL = 16n

We shall use this time as the basis for comparison with other architectures.

3.2.2. Vector Architectures

Higher levels of performance can be achieved by increasing the level of con-

currency beyond that offered by a scalar processor. Suppose that the RISC-i micropro-

cessor is augmented with vector capabilities similar to those of the Cray-lil]. In order

to use vector instructions, a loop must be distributed into a set of simpler loops such

that each new loop corresponds to exactly one vector instruction[16]. This transforma-

tion is shown in figure 3.6. In this example we optimistically assume that some

unspecified hardware is available for loop control, hence we ignore the if and goto

instructions. Only loops 2. 4. and possibly 5 can be vectorized since the other loops

each contain more than one instruction. The reason loops 1 and 3 cannot be distributed

further is that the statements within them form recurrences(27]. It is well known that

recurrences involving pointers through memory or indirect references through arrays

such as those in loops I and 3 cannot be vectorized and must be executed serially. Loop

5 is also a recurrence, but it is a special case in that it is a vector reduction operation

S. . . . . . . . .. ..
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loop 1: a, - arc(c,.-) Load pointer to arc pointer list.
b - 1(a, ) Load pointer to second arc descriptor.
c. -node(b.) Load pointer to destination of arc.

ignored: d : if (cm O) ext Terminate loop if no more vertices.

loop 2: e. - data(c,,) Load data field from vertex descriptor.

loop 3: f "- e'. + im-i Use data to offset recirculating index.
gm *"T(fm) Load index to array of records.
h - ga << 2 Shift index to form offset.
i,, R.index (h,) Load new value of recirculating index.

- loop 4: - R.valw (h,) Load new data value of interest.

loop 5: km - k..- 1 + j. Accumulate new data value.

ignored: 1: goto loop Start another iteration.

Figure 3.6. Example of vectorization by loop distribution.

involving an associative operator. On some vector machines special hardware is avail-

able to evaluate such recurrences quickly with a single vector inistruction[28].

From figure 3.6 we can derive the best case execution timing for a vector processor

"* with memory access delay of two cycles and arithmetic computation delay of one cycle.

Namely. we assume that the vector processor has a sufficient number of processing ele-

K ments or pipelines so that resource contention is not an issue. However, we do assume

that there is only a single scalar processor with an instruction issue rate of one instruc-

tion per clock cycle, since that is usually the case for vector architectures. Loops 1 and

3 must be executed on the scalar processor. Loop 1 contains a chain of three loads so its

execution time is 6n cycles. Loop 3 contains a chain of two loads and two ALU opera- ''

tions so its execution time is also 6n cycles. Loops 2 'nd 4 each contain one load

instruction and so can be vectorized. Since all n iterations of a vectorizable loop can.

.2. L.
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with sufficient resources, be performed in parallel, loops 2 and 4 take 2 cycles each. We

shall be very optimistic and assume that loop 5 can be treated as if it was a pure vector

instruction and charge only 1 clock for its execution. Taken together we find that the

best execution time on a vector processor is

"'vzcRo =6n +2+6n +2+1=12n +5

The speedup relative to the scalar processor is given by

= ______ 16n
t Tvpcro 12n + 5

For a large number of iterations the speedup approaches

.Pv R s 1.333

Note that this speedup is very optimistic and does not take into account overhead for

loop control.

In spite of the fact that vector architectures offer much more concurrency. the

achieved performance is rather poor for this example. The reason is that only a small ,

fraction of the loop is vectorizable due to the extensive number of recurrences and

hence most of the execution must be performed in scalar mode. Almost all linked data

structures cause recurrnces through memory. The use of linked data structures is per-

vasive in nonnumeric programs as well as certain numerical programs. such as those

that operate on dynamic sparse matrices. In view of the high cost of providing vector

execution capabilities, the use of a vector architecture is inappropriate for job loads con-

taining significant usage of linked data structures.

3.2.3. Multiprocessor Architectures

A multiprocessor is more flexible than a vector architecture. A schedule showing

issue times for the first three iterations on a multiprocessor consisting of three

IL
U- e
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independent scalar RISC-i. microprocessors is shown in figure 3.7. In this figure the

instructions are represented by either the result register name or the explicit label as

ILL

TIME PROCESSOR
1 2 3

0 4 _

2 b
3 4
4 c
5

S6 d a

8 *b
9 _-

a 10 jc
11

12 h d 4

13 "
14 i b
15 k

t 16 _c

17 1
18 h d
19 j e

20 £ ."
" 21 k L

22 "
23 -
24 h
25
26 -

27 k

Figure 3.7. Multiprocessor schedule for three iterations of the loop.

-. '..........
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shown in figure 3.3. Because recurrences transmit data to future iterations of the loop.
%o., *

the initiation time of each loop iteration is delayed relative to the previous iteration.

Techniques for calculating the value of this delay and transformation algorithms for

minimizing this delay have been developed[29]. The schedule shown is the best possible -L,

in terms of minimizing the inter-iteration delay. which is six in this example. Provided

there are enough processors to eliminate resource conflicts, the execution time to corn-

plete n iterations on a multiprocessor is

Tmtuz ' = 6n + 9

Note that instruction k takes only one time unit to complete execution and that all

instructions are actually completed by the time k is completed. The speedup relative to

a single scalar processor is therefore

TSCALAR M 16n --2.667

Since multiprocessors are more flexible than vector processors. they can be

expected to achieve higher speedup for a wider class of application programs. In this '

example a multiprocessor architecture was able to do twice as well as a vector architec-

ture. However in calculating the timing for a multiprocessor we have ignored the corn- -
qL-u

munication and synchronization time between processors and the time lost due to .

memory port contention. If a multiprocessor has independent scalar processing units

that operate asynchronously from each other (an asynchronous multiprocessor). then

some amount of interprocessor communication overhead is inevitable. When asynchro- .

nous multiprocessors are used to evaluate recurrences, the achieved performance is very

sensitive to interprocessor communication overhead. For example, even a modest inter-

7 processor communication delay of two clock cycles per iteration would lower the

speedup from 2.667 to 2.

' - :-
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The asynchronous characteristic of multiprocessors is advantageous in that it pro-

h t'vides greater application flexibility and also allows a larger collection of processors to

be coupled together. due to less restrictive clocking requirements. When applied to

recurrences, however. these advantages cannot easily be realized because recurrences

severely restrict the number of processors that can profitably be used. Referring to

figure 3.7. we see that the maximum number of processors that can be used efficiently

on this example is three, since the fourth iteration cannot begin until time 18. whereas

processor I is free by time 16. Thus asynchronously coupling large numbers of proces-

sors not only incurs the additional cost of asynchronous interprocessor communication.

but provides no performance gain in many applications. If only few processors can be

used effectively, a small synchronous system is more cost-effective.

[]U 3.2.4 Horizontal Architectures

An alternative to the asynchronous multiprocessor architecture is the hwizotal

S-architecture[9. 30. 31]. A horizontal architecture consists of multiple processing ele-

ments controlled by a single instruction issue unit. These architectures use wide

instructions with multiple fields to control each processing element independently in a

manner similar to horizontal microcode. The processing elements may be specialized

V pipelined functional units[30. 31] or relatively unspecialized scalar processors(9]. The

main advantage of horizontal architectures is that they are globally synchronized and

" extremely tightly coupled. These characteristics allow horizontal architectures to pro-

vide low-overhead high-bandwidth communication between processing elements at rela-

tively low cost. The disadvantage is that relatively fewer processing elements can be

supported by such architectures. This, though. is not a serious handicap for recurrence

intensive workloads which cannot effectively utilize many processors in any case. '-

" Z
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Consider a horizontal architecture that consists of a two-segment pipelined

memory reference unit, a one-segment ALU. and a two-segment pipelined delayed jump

unit. This configuration was chosen to be compatible with the RISC-i microprocessor

being used as the basis for comparison. The separation of functions is motivated by the

observation that distinct specialized hardware is needed for each of the pipelines, hence

parallel execution of these functions is reasonable.

Figure 3.8 shows the execution schedule for one iteration of the loop on this pro-

cessor. In this figure 5 cycles are shown as blank entries. Note that the time for one

iteration is 15 cycles instead of 16 cycles for the RISC-1 microprocessor. This reduction

arises because the increased concurrency allows instructions d and e to be issued in the -.

same clock cycle. However. if only this small speedup of 1.067 were attained it would

TIME MEM ALU iMP
s=g. 1 sese.1 2 s.2 "- -

0 a __

2 b _ _ _ .. .
3 b
4 c "__" _""_

4 C _

6 e d7 1 d i

8 _

10 ~~ __

11 A ,--_--._-_.

12 _

13 j _ I
14 J k-

Figure 3.8. Horizontal architecture schedule for one iteration of the loop. t r'* A

......................................-... -...........................
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hardly be worthwhile in view of the higher cost of a horizontal architecture.

,: . '.. High performance is achieved on a horizontal architecture when the execution of -.

multiple loop iterations is overlapped. The left hand side of figure 3.9 shows one itera-

. tion of the schedule for the loop. Several extra delays have been added to the compact

schedule shown in figure 3.8 for reasons that will become apparent. Note that only the

first segment of the MEM and JMP pipelines have been shown since the behavior of the

.* second segment can be inferred from the first segment.

The right hand side of figure 3.9 shows a composite schedule obtained by overlap-

I 68 ping four copies of the left hand side schedule each delayed by seven clocks. This time

delay between iterations is called the initiation interval. The superscript indicates the

iteration number associated with each particular instruction. An initiation interval of

seven clocks is sufficient to satisfy dependencies between iterations. The inter-iteration

dependencies are c" -. a"' 1 i" " f"m. and k m -. kM +1"

As shown in the figure. beginning with clock 14 the memory pipeline is fully util-

ized and continues to be fully utilized throughout future iterations. Therefore an ini-

tiation interval of 7 is minimum. The execution time on the horizontal architecture is

S"" TopjzorrAL. = 7A + 16

Hence the speedup relative to a scalar processor is

SPHOPUZOIAL - - 16n -2.286
H ToosrM 7n + 16

" While this speedup not as high as the asynchronous multiprocessor speedup of 2.667. it

should be noted that communication between processing elements in a horizontal archi-

tecture does not introduce any overhead since interprocessor synchronization is precal-

culated at compile time. The multiprocessor required three memory ports and three

ALUs to achieve a speedup of 2.667 while the horizontal architecture required only one

i ..:.
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Figure 3.9. Horizontal architecture schedule showing iteration overlap.
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..memory port and one ALU to achieve almost as high a speedup. Therefore the horizon-

" - tal architecture can be expected to be less costly than the multiprocessor. Furthermore.

considering that the asynchronous multiprocessor speedup drops to 2.000 with the

U. introduction of even very modest communication delay, the horizontal architecture can

be expected to outperform the asynchronous multiprocessor for many job loads.

3.2.5. Summary

High performance computer systems need to be efficient both on vectorizable

numerical job loads as well as on other more general job loads. The extensive use of

linked data structures causes many recurrences through memory. These recurrences

. -cannot be transformed into vector form, hence vector architectures cannot provide sub-

stantial speedup on such job loads. Recurrences also limit the number of processors

that can be used profitably in a multiprocessor architecture. This, coupled with the fact

that asynchronous multiprocessors generally have nonnegligible interprocessor com-

munication overhead, suggests that asynchronous multiprocessors consisting of a

t number of conventional scalar processors may not be the most cost-effective architec-

ture for general job loads.

The use of horizontal architectures appears to offer improved performance over

ELI tvector architectures, and improved cost-effectiveness over asynchronous multiproces-

sors. High utilization of horizontal multiprocessors can be obtained by code scheduling

so as to maximize overlap between loop iterations. In the next sections we develop a

technique for the automatic generation of Co. imal throughput loop schedules for hor-

•" izontal architectures.

4.

.........
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3.3. Scheduling Graphs with Acyclic Dependencies

The complexity of finding an optimal throughput schedule for a loop is highly .

dependent on the characteristics the dependency graph representing the loop. For pur-

poses of code scheduling it is convenient to classify the nodes in a dependency graph. N.

into subsets

N=UR SU SA

This classification is based on strongly connected components[32]. Strongly connected

components of a directed graph are defined to be maximal sets of nodes such that if ,

nodes x and y are members of the same strongly connected component. then there is a

directed path from x to y and also a directed path from y to x. Each strongly con-

nected subgraph containing two or more nodes is called a nudtinode recurrence. denoted

by the set Rk. The total number of such multinode recurrences is m. Other strongly

connected subgraphs contain only one node each and are called self-loops, denoted by

the set S. The remaining nodes are not in any strongly connected components. These

nodes are classified as acyclic. denoted by set A. Note that the node sets

R I.R2 ..... R,. S and A are all disjoint.

The problem of optimal throughput loop scheduling is to find a valid schedule

with a minimwn initiation interval (MII). The simplest case occurs when the depen- .H

dency graph is acycic. e.g. the graph contains only acyclic nodes. An optimal schedul-

ing technique for acyclic dependency graphs has been proposed by Rau[31] for use on

horizontal architectures. In this section we briefly review Rau's results.

33.1. The Available Resource Limit Constraint

If a graph contains only acyclic nodes then every iteration of the loop is indepen-

dent of every other iteration. Consider the acyclic dependency graph with nodes N = A

- .: ...'.
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shown in figure 3.10. This graph was derived from figure 3.4 by ignoring the feedback

arcs. thus removing inter-iteration dependencies. The letters M. A. and J within each

node specify the pipelined functional unit (MEM. ALU. and JIP. respectively)

required by that node. The number in each node. of the form +s. gives the number of

segments in the functional unit pipeline.

Since there are seven memory references needed per iteration, and only one pipe-

lined memory unit is available, successive iterations cannot be initiated less than seven

clocks apart. In general there is a lower bound on the M11 based on resource con-

straints. This lower bound is called the available resource limit (ARL) and is defined as

follows.

ARL(N) max 81 (c)

Where

lo8,(if f = c. "...' i 8 (c) = otherwise i.

10

Nodes are numbered from 1 to n, indexed by i. The type of functional unit required

* by a node is given by f. C denotes the set of all functional unit types. In this exam-

pie, C {M, A. J).

The available resource limit states that the initiation interval is lower bounded by

the most heavily used resource. Since. for this example. E8j (M) = 7. E8 (A) - 3.

and 8 (J) = 2. the AIZL is 7. This lower bound is not restricted to schedules for acy-

clic dependency graphs. In general. a valid schedule for any dependency graph must

satisfy the condition

"..
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M +2
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Figure 3. 10. Example of acyclic data dependency graph.
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MII (N)>sARL (N)

where N is the set of all nodes in the graph.

* Patel[33] has shown that for strictly acyclic dependency graphs, at least one func-

tional unit can always be fully saturated. Therefore

M11 (A) = ARL (A) :

Once the MI! has been found, it is relatively easy to construct a valid schedule with

that initiation interval.

U9 mBefore presenting the algorithm for schedule construction, some terminology is

necessary. A schedule for a set of nodes N = 1... n I is given by the issue times of

each node. denoted by xi. 1.i 4n. The initiation interval for a schedule is denoted by

p. The execution delay of a node is equal to the number of segments in the pipelined . "

functional unit used by that node. This delay is given by sf where f i is the func-

tional unit used by node i.

if[ A resource conflict occurs if two nodes require the same functional unit in the

same clock cycle. Note that since successive iterations of a loop are overlapped with an

initiation interval of p. a node from iteration k issuing at time t will conflict with a

node from iteration k -1 issuing at time t +p. provided both nodes require the same

functional unit. More generally, the modulo usage function is defined as

Sif f, c and (x, mod p) t
- 8(c.t) 0 otherwise

" This function is 1 if and only if a node I requires resource c at any of the times

C , C +p . t +2p.• For a schedule to be valid (e.g. causes no resource conflicts), the fol-
-t lowing condition must hold.

I"S
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E8j(c t) < 1 for all c e C. O < t < p

An algorithm for finding an optimal schedule for an acyclic graph is given in

figure 3.11. Note that nodes in a directed acyclic graph can always be topologically k

sorted to get a linear sequence in which every node depends only on nodes preceding it

in the sequence. Without loss of generality we can assume that the set of nodes N is so

ordered. An informal description of algorithm A follows:

(1) The first node is not dependent on any other node, hence step A4 does nothing.

Step A5 also does nothing since no resource has been reserved for any node.

Therefore x1 =0.

(2) Suppose that a partial schedule consisting of nodes 1 through j-1 has already

been found. The earliest issue time for node j can be computed by examining all

the predecessor nodes that j depends on. given by the set pred (j). This examina-

tion is carried out in step A4. Since the nodes are being processed in topological

order, all the predecessors of j must have already been processed and hence their : L
xj are well defined.

Al. p- ARL (N) .

A2. forj-1 ton do

A3. Xj 0

A4. for each i e pred (j) do xj -max( xj xi +sj

J -1
AS. while ,81(fjxj mod p) dO do xj '-xj +1

Figure 3.11. Algorithm A: optimal throughput schedule for acyclic graphs. c

2V-°
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3(3) If issuing node j at the 'earliest permissible time does not cause a resource conflict

then node j is assigned to that time. Otherwise the starting time of node j is

incremented until there is no conflict. This resolution of resource conflicts is car-

ried out in step A5. Note that because p has been calculated to be just large

enough so as not to overutilize any resource, the while-loop in step A5 terminates

- after at most p -i iterations.

The application of algorithm A to the graph of figure 3.10 yields the schedule shown in

figure 3.12.

Because every iteration of the loop is identically scheduled. A complete characteri-

zation of the steady state behavior of the loop can be obtained by looking at p consecu-

tive clock cycles. One can simply divide a schedule into sections each p clock cycles

a long. label successive sections with successively decremented iteration superscripts, and

overlay them on top of one another. This overlaid representation is called a modulo

* reservation table (MRT). Figure 3.13 shows the MRT which corresponds to the example

schedule. The superscript gives the iteration numbers. The subscript gives the issue

* time of the node in clock cycles relative to the beginning of the schedule. Note that the

* .issu times are redundant: a node z is issued at time x. t + kp, where t is the slot

time in the MRT. For example. the node -2 has aslot time of 5. hence its issue time is

5 + 2-7 =19. Although redundant in this example. the issue time is included to be

compatible with later examples.

In addition to being a more compact rPTpresentation of the schedule. the MRT is

also a convenient data structure for the evauation of the while condition in step AS of

algorithm A. The while-loop terminates when a time slot is found whose use by the

t current node will not cause resource conflicts. By using the MIRT, the while-loop ter-

inates when there is an empty slot in the appropriate functional unit column. A

....... ~~~~ . . . . ... . . . . . . .. .. .. . . . . . . . .
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TIME MEM ALU JMP -N

0 a

2 b
3
4 c..
5
6 e d
7 .-7 -:~
8 f "
9

10 9.-*2

11
12 h
13 ' "
14 ---

16

17 ___

18 ,-_ _
19 . :-,

20 ____

21 k

Figure 3.12. Schedule for acyclic dependency graph.

resource conflict occurs if two nodes are assigned to the same slot in the MRT. Full

utilization of a resource occurs when a column is completely filled. In this example the

MEM column is full, hence the memory pipeline is fully utilized and optimal

throughput that matches ARL is obtained.

3.3.2- Startup Time and Scheduling Complexity

Throughput optimal schedules achieve optimal performance only after several

loop iterations: the first few iterations are not optimal because resources reserved for ""

-- . p ,-

* .' . .. ". --. *']



* b 0

2 2y

3 g

4 CO jj
1 4j j l'~

6 d 06

Figure 3.13. Modulo reservation table for acyclic graph schedule.

* nonexistent previous iterations are unused. The number of suboptimal iterations is

- related to the length of the schedule. I. defined as

L =J
Referring to figure 3.13. a schedule with length 1 4 has nodes belonging to iterationsL

in the range 0 through -(1 -1) - -3. During iteration 1. the time slots reserved for

nodes labeled as iterations -1. -2. and -3 are unused. In general. during iteration

k. 14~k <1.* the time slots reserved for nodes belonging to iteratio.s labeled

-. ,-Q -1) are unused. Therefore a schedule of length I achieves optimal perf or-

mance beginning with iteration 1.

In algorithm A the assignment of xj was made based on the first available slot in

the MRT. There is no reason why the fims empty slot must be assigned. A shorter
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schedule may be achieved by assigning xj to other empty slots, as shown in figure 3.14.

The number of assignments to each xj that must be searched in order to find the shor-
(

test schedule is dependent on the characteristics of the dependency graph. Patel[33] has

shown that if the earliest allowable issue time for xj is t. only the assignments

t.t+1.t+2, . . t+p-1 need to be considered in finding the shortest schedule. Thus

the number of assignments per node is upper bounded by p.
6.

The complexity of an optimal throughput scheduling algorithm is strongly depen-

dent on how the algorithm handles the problem of startup penalties. The complexity of

algorithm A can be calculated as foUows- There are n nodes to be scheduled sequen-

tially. Each node may. in the worst case, depend on every preceding node. Hence the

for-loop in step A4 requires 0 (n) iterations. The while-loop in step A5 requires 0 ()

iterations. This gives a total complexity of ( n2 + np )for the algorithm. If. as is

commonly the case, the number of predecessors of a node is bounded by a constant.

TME MEM ALU MP

0 a: h j4

1 2 "

2 *,- . r 1F
3 i1 7  kj' L'

b.0

5_ gjj

6

Figure 3.14. Optimal throughput schedule with shorter length. d i "

w.

N'" . -'
. '

V' ' :
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then the complexity reduces to 0 (np). Note that for acyclic graphs. p n r since full

utilization of at least one resource is achieved.

Algorithm A has a relatively low complexity of 0 (np) because it generates an ,

optimal throughput schedule but does not guarantee minimum startup penalty. On the

other hand. to find an optimal throughput schedule with minimum startup penalty, it is

necessary to consider all feasible assignments of xj at step A5 instead of the first feasi-

ble assignment. Since there are 0 (p) feasible assignments per node, the total complex-

ity of such an algorithm is 0 (pn) Patel[33] has demonstrated an efcient branch-and-

bound algorithm for finding optimal throughput schedules with minimum startup

penalty. In view of the fact that loops usually continue for many iterations and there-

fore the impact of the startup penalty is amortized over a long period of time. it may

not be worthwhile to pay the additional computational cost necessary to generate a

minimum length schedule. However. the need for minimum length schedules reappears

when more general graphs are considered, to be discussed in section 3.5....

The observation that there are multiple feasible assignments of the xj leads to the

minimum complexity optimal throughput scheduling algorithm by Rau[31]. shown in

figure 3.15. Algorithm B has a lower complexity than algorithm A by making use of

the fact that nodes can be placed anywhere into the MRT so long as they are in the

proper functional unit class column. A description of algorithm B follows:

(1) Steps B4-BS finds the earliest issue time for each node. These steps are the same as

steps A3-A4 in algorithm A.

(2) Step B6 performs resource assignment. Each node is assigned a slot time. rfJ. in

the MRT. The counters. r,. keep track of the next empty slot time for each

resource class, c e C. Note that the available resource limit assures that re < p

for every resource class c.

.....................................................
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Bi. p.-ARLC(N)

*A

B2. for each c e C do r,--1

B3. for j.-1ton do

B4. XJ .0

B5. for eachi epred(j) do x1 4-maxlx 1 x,+S1 , .

B6. T +

B7. xi - + /f
4- P[X, PTJfJ1~~

Figure 3.15. Algorithm B: minimum complexity optimal throughput schedule.

(3) Step B7 adjusts the issue time of each node such that it falls on the assigned slot

time. Tf. This adjustment is made by increasing xj. if necesary. to satisfy the

equation xj mod p - 7,,. Since nodes are assigned in topological order, adding

extra delay to the issue time of a node can never violate data-dependency con-

straints in an acyclic graph.

Application of algorithm B to the graph in figure 3.10 yields the schedule shown in

figure 3.16. Optimal throughput is achieved since the MEM column is completely filled.

However the length of this schedule is seven, significantly longer than the schedule

length of four produced by algorithm A. In general algorithm B can be expected to pro-

duces longer schedules than algorithm A. This longer length has an adverse impact on

loop startup, but may be negligible if the loop continues for many iterations.

The complexity of algorithm B can be calculated as follows. The loop in step B2

requires c iterations. The loop in step B3 requires n iterations. The inner loop in step

..........................................,...::-;2 _.
A. . . , - . • • . . - , . % ° ' . % ' , - . -.° ° . ° .A" . , . . . . . " ,



* - 63
o .I V

TIME MEM ALU WMP
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2 Cj k4

3
34 :T

5,.

Figure 3.16. Optimal throughput schedule from algorithm B.

B5 requires n iterations in the worst case. Therefore the total complexity of the algo-

rithm is 0 (c + n 2). Typically. the number of functional unit classes is fixed and the

node fan-in is bounded by a constant. Under this assumption c is a constant and the

nestei loop in step B5 requires a total of 0(n) iterations. Thus the complexity of

algorithm B can be reduced to 0(n). This is clearly the minimal order of complexity

9.4since each node must be examined at least once in order to generate code.

3.33. Summary

Loops whose dependency graphs are acyclic can be scheduled to achieve optimal

. throughput using algorithm B. The 0 (n) complexity of algorithm B is minimal. This

:esult forms the basis for the proposed simple loop scheduling technique to be proposed.

Algorithm B generates schedules that are suboptimal in terms of length. To gen-

. . erate schedules with minimum length requires an algorithm whose complexity is

. . . ....-.. .- .* ., , , . ... " "7..-. .... "--. -
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0 (p") This high complexity makes the generation of such schedules unatt active forOl

acyclic graphs since the length of a schedule affects only the loop startup penalty and

not the loop steady-state performance. However the generation of minimum length "2.

schedules is necessary for the more general graphs in section 3.5. which involve mul-

tinode recurrences.

34. Scheduling Graphs with Self-Loop Dependencies

In the previous section we presented scheduling algorithms for strictly acyclic

dependency graphs with nodes N = A. In this section we present an extension for han-

dling dependency graphs that include self-looping nodes, but no multinode cycles.

These graphs have nodes N S U A.

One common source of self-loops is loop induction variables[34]. An induction

variable x is a variable whose only assignments within the loop are of the form b
x = x + c. where c is a constant or loop-invariant value. Optimizing compilers fre-

quently generate induction variables to step through arrays. For example, the Fortran

loop in figure 3.17(a) will be transformed into the loop in figure 3.17(b) by an optimiz-

ing compiler in order to eliminate the multiplication otherwise needed to evaluate the

address of A(i.j). Other sources of self-loops include reduction operators such as vector

summation, and traversals of linked data structures. Statements such as p = p -next

in C or i = A (i) in Fortran are commonly used to traverse linked data structures.

Such statements cause self-loops in the dependency graph.

Consider a self-loop node 1 of the form x = x + 1. The operation in this node is

dependent on the value generated by the same node in the previous iteration. Since the

execution time of node i is given by s5 I. successive iterations of a loop must be :.; ;::

separated by at least f , clock cycles in order to allow enough time for the addition

function in the previous iteration to be completed. This constraint on the MII of a
2"..
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dimension A(O.20) -
do i- 1. m

d oj-1.n
Ss -s + A(i.j)

(a) source

do i -1. m
a - &A(i.1) &A(i. 1) denotes address of element L
do j 1.n

s -s + *a *a denotes load using a as a pointer
a - a + 10 Note Fortran arrays are column major

hi' (b) object

Figure 3.17. Example of induction variable generation.

schedule is given by the self-Loop limit (SLL). defined as

SLL (S) = max{ s/ }
its

For a general data dependency graph the following condition must hold.

MIIC(N) muARL (N). SLL (S)I

The existence of self-loops does not change algorithm B previously given for

finding optimal throughput schedulet, except that p is precalculated in step BI to be

. p ARL (N). SLL (S)

- - Note that since p can be greater .hin ARL. full utilization of at least one resource can

no longer guaranteed. However the resulting schedules are still throughput optimal.

"c.

.-. ,. -...__ _ _ _ _ .

* o
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It should be noted that many self-loops form linear recurrences[27]. Techniques ' -

are available for transforming these recurrences into faster forms when the SLL con-

straint prohibits maximum resource utilization. The SLL constraint can be relaxed

when such transforms are applicable and used. These transformation techniques are

compatible with the scheduling techniques proposed in this chapter. but we shall not

pursue them further in this thesis.

3.5. Scheduling Graphs with General Dependencies

A general dependency graph may contain acyclic nodes and self-loop nodes, as

well as one or more multinode recurrences. Consider a loop containing a multinode

recurrence as shown in figure 3.18. Because the back arcs go from the very bottom of

the graph to the very top. there can be no overlap between successive iterations. There-

fore maximizing the throughput of such a loop is equivalent to minimizing the delay

through the acyclic subgraph which excludes the back arcs. The problem of scheduling N

a set of dependent tasks on a machine with limited resources so that the total delay is

minimized is the same problem as the minimum startup penalty scheduling problem. 13
and is known to be NP-hard[29]. However heuristics which work well in general are

available in the literature[29. 33]. It should be noted that although obtaining an

optimal schedule for multinode recurrences is NP-hard, it is quite practical to do so if

the number of nodes involved is small.

Having established that in general obtaining a maximum throughput schedule for

a loop containing a single multlnide recurrence is NP-hard, one might consider finding a

way to decompose a loop containing multiple multinode recurrences into several smaller

NP-hard problems, one for each recurrence. Unfortunately this is not possible in gen- a '

eral. Consider the example graph in figure 3.4. This graph contains two multinode

recurrences {a, b, c) and f g. h, i. Each of these can be individually scheduled

'" •
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Figure 3.18. Example of multinode recurrence.

with an initiation interval of six cycles as shown in figure 3.19. Since the sum of the

resource requirements for both schedules is only five, it would seem possible to combine

the two schedules and retain the six cycle initiation interval. However, such a combina-

tion cannot be achieved in this case because g and i must be three clocks apart and this

separation is incompatible with the two clock separation required tetween a. b. and c

as well as between c and the following a. Since both schedules a e rigid in the sense

that no node of either schedule can be delayed without increasing the p of that

schedule, the two schedules cannot be combined to form a joint schedule with an initia-

tion interval of six.

. . . . . ., - - -
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"" .',*.. r-'.'

TIME MEM ALU TIME MEM ALU
0 0 f
1 _ _r

2 b 2

3 3 h

4 c 4 i

5 5 .-7 _-

Figure 3.19. Example of separately scheduled multinode recurrences.

Because multinode recurrences cannot in general be decomposed, it is necessary to

use a combinatorial technique, such as branch-and-bound, to find the maximum

throughput schedule for a set of multinode recurrences. It follows that for a set of

multinode recurrences R - RI. R2. .... . .

M1 (R) ma MII(R 1). MI (R2) . M1 CPm) }

For a loop with a general dependency graph whose node set is

N=URk USUA

the optimal throughput schedule must also satisfy the available resource limit and the

self-loop limit. Therefore, once MI! (R) is found by some combinatorial technique, the

minimum initiation interval for the entire loop must satisfy

MI! (N) > mail ARL (N). SLL (S). MII (R))

At this point the following question arises: Is it possible to construct a schedule for N r -

such that the achieved initiation interval, p. is max( ARL (N). SLL (S). MI (R))? An

affirmative answer to this question would be significant in that once MI! (R) is known.
'.1

.° ... .

*_ . . . . . . . .
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S the optimal initiation interval p is readily found. A schedule for that initiation inter-

val must exist. and that schedule must yield the highest steady-saetruhu

(neglecting startup time).

We have developed an efficient algorithm to construct throughput-optimal

schedules for simple loops with general dependency graphs, with the achieved initiation

interval p = mx( ARL (N. SLL (S). M11 (R). Before presenting the simple loop

* scheduling algorithm. we first present a formal specification of the optimization prob-

lem. that must be solved to construct a throughput-optimal schedule.

wd 3.5.1. Formulation of the Optimization Problem

A program loop is represented by a directed data dependency graph G =(N. D)

containing instruction nodes N = U1. 2...n). Dependencies or edges between instruc-

tion nodes are represented by an X n dependency matrix D [d, j] If two nodes i

and j are independent thendi. * 00 Otherwise di, j gives the distance in loop itera-

tions between the source and destination of the dependency. If. in the current iteration.

node j is dependent on node i also of the current iteration, then the dependency dis-

tance is zero iterations so di = 0. If node j is dependent on node i of the previous

iteration then di j = 1. If. through subscript or pointer analysis it is known that node

-IJ can only depend on node i of the k previous iteration, then di. k . Note that

dij, ~0for all ie N. j e N.

Recall that the functional unit clas used by an instruction node i is given by f

and so the execution delay of that node is given by sf ~. Previously we have assumed

that there is exactly one resource unit of each particular class. We now generalize that

assumption by using u, to denote the number of functional units of a particular class

C.*C C C.
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Let xi be the issue time for node i and let the initiation interval for the schedule

be p. The problem of constructing a maximum throughput schedule is to assign integer

values to x, such that the initiation interval p is minimized without violating any

dependency or resource constraints. The problem of finding a schedule with a minimum

initiation interval is formally stated in figure 3.20.

Constraint (1) is necessary to prevent data dependency violations. Suppose j is

dependent on i of the same iteration. Then di,, = 0. so the constraint becomes

xi + I 4 xj. This inequality simply says that xi must finish execution before xj can

start. If j is dependent on i from the previous iteration, then there is an extra latitude

of p cycles due to the intervening iteration. This latitude is reflected by the term

-p "di. j. Note that if j does not depend on i. thend = oo. so constraint (1) becomes

vacuous for the node pair (i, j ).

Constraint (2) is necessary to preclude resource usage conflicts. Consider a clock

cycle t. 0 4 t < p. Because successive iterations of a loop are overlapped with a shift

of p cycles, a node of iteration k scheduled for time t will occur concurrently with a

Assign xi,.i E N. so as to minimize p subject to the constraints

xi + 1  -p.di. j XJ i eN. j eN (1)

z8i(c~t) 4 U" C aC. 0 4t < P (2)

where

{1 iffi =c and(xi mod p)-t
81 (c. t = otherwise

Figure 3.20. Formulation of the optimal scheduling problem.i = El
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S node of iteration k -1 scheduled for time t+p. In general. all nodes scheduled at t.

St +p, t +2p. t +3p, ... will occur simultaneously due to the overlap. Constraint (2)

states that the number of resources of a particular class, c, that are needed .imultane-
I

ously cannot exceed the number of available resources. u.

'.* ' 3.5.2. Initiation Interval Extension Theorem

| Crucial to the simple loop scheduling algorithm is an efficient method for extend-

"' ing the initiation interval of an existing schedule. This initiation interval extension

method is given by the following theorem.

Theorem

Given a valid schedule for a graph N with initiation interval p' - M (N). a new

"" b schedule with initiation interval p >p' can be constructed by reassigning the node issue

times such that

Xi x1, + (P-P

where xi' denotes the issue time of node i in the old schedule and xj denotes the start-

ing time in the new schedule. Note that this expansion adds p-p' empty rows to the

end of the old MRT for the p schedule. [

Proof: .

The new schedule is valid if and only if it violates neither the data-dependency

constraint (1) nor the resource utilization constraint (2).

S.-" Part (a) - Prove data-dependency constraint satisfied for the new schedule:

The data-dependency constraint states that

xi + s --p di. -x 0

:m .:....

* * .. . . . . . . .** *. .o~

~~~~~~~~ -o -o. - !. .- 2 .
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for every ordered pair of nodes. (, j). Substitution yields -

+i(P[F +s1f (p -p+p')dj F+ (P P) 0

Rearrangement yields

Since the old schedule was a valid schedule. the original node starting times must

satisfy data-dependency constraints. Hence

xj' + SfaP'*d. j xj~ 4 0

Noting that (p -p')> 0. it follows that the data-dependency constraint for the new

schedule is satisfied if

The validity of the old schedule implies that

Since xi' appears in a nonnegative term in inequality (3). replacing that term with

another term that is no smaller yields a tighter constraint. Thus, if

is satisfied. then (3) and hence the data-dependency constraint for the new schedule is

satisfied. Since di. is an integer. it can be canceled to yield

S<<. x' + . - , '-" "
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This inequality is satisfied since sf 0. Hence Part (a) is proved.

-. Part (b) - Prove resource utilization constraint satisfied for the new schedule:

L The resource utilization constraint states that

_8,(c.t) <.-

forO 0 t <p andc eCwhere-.

11 if i c and(x, mod p)t
• 8 (, t ) = otherwise ".v

Let 81' refer to the old schedule and 81 refer to the new schedule as defined below:

1 if f =c and (xi'mod p') t
8,(ct)- t otherwise

U I I .':

I if f i = c and ((xi' + (p -p') mod p) t

p8,Cc~t) 0 otherwise

Then the resource utilization constraint is satisfied if 8j'(ct)=8j(c,t) or

equivalently if
* . o .

ma p +xmodp

for 0 4 1 4 n. Replacement of the mod function gives

r
'+(-p- = ' -p :'

%°,., +. :P-PP:} X
Rearrangement and cancellation yields

I ,
..............................................
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Let x' ap' + where a > 0. 0 < p. and a. are both intgerm Then .

Using the fact that o = a. the equation reduces to - ,

L~L_

Simplifying yields 
- .4

[a- -J.

The equality is satisfied since < p' < p and a is an integer. Hence Part (b) is proved.

3.5.. The Simple Loop Scheduling Algorithm

The ability to extend the initiation interval of an existing schedule to accommo-

date more nodes allows us to adapt algorithm B to the more general case involving mul- -

"inode recurrences. Recall that algorithm B requires that the nodes of the acyclic graph

be ordered in topological ordering. Topological ordering of the nodes in a cyclic graph is

obviously impossible. Instead we use a topological ordering based on the acyclic super- -

snructure graph[32] of the general graph, constructed as follows.

(1) For each multinode recurrence Rh do the following: Delete all dependency arcs

whose source and destination are both in Rt . Replace the nodes in Rt by a single

new node. rk. and connect all remaining dependency arcs to and from nodes in Rt . "

° ,*
.

°- -

It"- - - - - - - --. •.". -" .. " .. •. -- -. "•, •" -. ." , ". - . .,:' A.t ,' '-" ' . X. 4 ., k. ..." '-J.. '- -- -',-, , -'---- ' - •"---"-* 4- t:.._ t~ ., .. .- , .-
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(2) Delete all self-looping dependency arcs from the node set S. At this point the
graph is acyclic.

(3) Topologically order the acyclic graph and let the nodes form a sequence. For each

single node. rk, representing a multinode recurrence, Rk, do the following: Expand

each rt back into the multinode recurrence Rt. Place the nodes in Rk into the

sequence so that if rk was between the nodes x and y. then all the nodes in Rk are

placed between x and y. Reconnect the dependency arcs at rt to the appropriate

"U., individual nodes in Rk as before.

(4) Restore the self-looping dependency arcs from the node set S. At this point the

original graph has been restored. - -

" This procedure produces the node ordering

- N= {No. RI. NI . . R. , ,,. N,

with the property that a set of nodes. Nt. contains the nodes that. in the topological

" ordering of the acyclic superstructure graph, fell between nodes rk and rt +1. Note that

.. ,N =s U A
k .0

The simple loop scheduling (SLS) algorithm, shown in figure 3.21. uses this node

ordering. Note that the SLS algorithm finds a maximum steady-state throughput

schedule for the loop, but makes no attempt to reduce loop start-up time. A description

" -of the SLS algorithm follows.

" (1) Step C2 constructs an optimal throughput schedule f x ', x 2 , .... . with initia-

tion interval p'for the set of multinode recurrences R R. R2 ..... RM ). using a

combinatorial search procedure. This schedule is extended, if necessary. in step C3
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i

Cl. procedure simple~joop_.cheduler (N)

C2. construct M11 schedule for R ..*

C3. extend schedule such that p = max( ARL (N). SLL (S). MH (R) }
C4. reservetimeslots (R)
C5. assign issuetimes (No)

C6. for k -- 1 to m do

C7. delay.jssue-times (Rt)

C8. assignissue_times (N)-

C9. end -.

CIO. procedure reservetime_.slots (R) "

CI. for each c eC do

C12. for t -0 to p-1 do Yt. -u,
C. ,o -- 1; Y-1*: -o
C13. Y-. -C14. for each i e Rt do _¥ Y-. .d . f t, . d p. , f

C15. end

C16. procedure assign_*suek_times CNt)
C17. for each j e Nk do :-. .

C18. Xj 4- 0 -

C19. for each i epredj) do xj 4-maxi xj.xi+sI

C20. while Y,., 0 do *-- r, + I

C21. x+ [xi - +irf,

C22. '

C23. end

C24. procedure delay-issue times (R)
C25. d -0

C26. for each j eRk do

C27. for each i epred j)-Rt do d d-maxid j +sf-x)}

C28. for each jeRt do xj x+
I± -

C29. end

Figure 3.21. Algorithm C: simple loop scheduling algorithm.

.7

'..- ',
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to accommodate the resource requirements of other nodes in the graph using the

formula x - ' + (p -p') previously presented.

(2) Step C4 calls a procedure to reserve the resource time slots used by the schedule

for the multinode recurrences. Steps Cli-C13 initialize counters. ir and the

two-dimensional array. Y. which represents the modulo reservation table. Each

row in Y represents a time slot. Each column in Y represents a class of resource.

An entry Y,, gives the number of free resources of class c at modulo time t"

Initially. all entries in Y are set to the number of available resources of the

appropriate class. u. In addition, a dummy row. -1. has been added to Y to sim-

plify the handling of the r,, counters. Step C14 reserves the resources needed by

the multinode schedule by decrementing entries in Y. :%-.

(3) Step CS calls a procedure to assign the issue times for the first set of nodes not

involved in multinode recurrences. This procedure is essentially the same as

algorithm B. with the exception that multiple resources of the same class are

allowed. Step C18-C19 finds the earliest issue time for node xj. Step C20 finds a

time slot that has a free resource of the appropriate clasL Step C21 adjusts the

issue time of xj to fall in that time slot. The resource is reserved in step C22.

Note that by selecting p to be no less than AAL. it is guaranteed that there will

be enough time slots to accommodate all the nodes.

(4) Step C7 calls a procedure to adjust the issue times of nodes in a multinode

recurrence. This adjustment is necessary since the multinode recurrence schedule

found in step C2 does not take into account dependencies between nodes in a mul-

tinode recurrence and other nodes. Steps C26-C27 find the minimum delay that

must be added to the issue time of each node in Rt to satisfy dependency con-

straints from previously scheduled nodes. This minimum delay is rounded up to

L.: :.i:. : -

____________________-__ k St~t.& .t~..t. aJ
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I
the next multiple of p and added to the issue time of each node in Rh by step C28. -

Note that dependencies between nodes in Rk are guaranteed to be satisfied if every "

node in Rt is delayed by the same amount. Also note that. because of the node

ordering, nodes in Rh can only depend on nodes previously scheduled and other

nodes in Rh. Thus the minimum delay calculation in step C27 checks only those

predecessors of j that are not members of Rk. These predecessors are given by the

set pred (j )-Rh.

(5) Step C8 calls a procedure. previously described, to assign the next set of nodes not

involved in multinode recurrences.

3.5.4. Example of Schedule Generation by the SLS Algorithm .

The operation of the SIS algorithm (algorithm C) is illustrated below, using the

example graph from figure 3.4. with

SMM =UAWJ UJMP=1

Note that the alphabetic node ordering has been chosen to conform to the ordering

required by algorithm B. Therefore No1, R, (a.b. c). N, (d. eI

R2 {f .g . h. i. and N2 = I).

(1) The M11 schedule for the two multinode recurrences R, and R2 is shown in

figure 3.22. Recall that the memory pipeline is two stages long and the ALU pipe-

line is one stage long. The initiation interval p = 7 is already large enough to ,.

accommodate ARL and SLL , hence no extension is necessary.

(2) Since No is empty, the first step is to process RI. However nodes in R, have no

predecessor nodes outside of R, so the delay d = 0.

(3) The next step is to schedule nodes in NI. There are two nodes. d and e. in N1 and

they are both dependent on node c. Hence the earliest issue time for both d and e

Inc:"-:
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TIME MEM ALU JMP

0 ao fo

11

2 b2

3 h 3

4 c4

6

Figure 3.22. M11 schedule for multinode recurrences.

is 6. The highest empty slot in the MEM column is row 3. so e is assigned at time

10. The highest empty slot in the JMP column is row 0. so d is assigned at time 7.

t. [(4) The delay for R2 is computed next. Node f from R2 is dependent on node e.

Since node e was 'ssued at time 10 and the memory pipeline is two stages long,

• -- node f must not be issued until time 12. To avoid causing resource utilization

conflicts the delay must be adjusted to the next multiple of p. Therefore the issue

time of each node in R2 must be delayed by 14 as shown in figure 3.23.

(5) Finally, nodes from N2 are inserted as shown in figure 3.24. In this figure. super-

scripts have been added to indicate relative iterations. As shown by the super-

':-- sripts, this example schedule contains four overlapped iterations. This schedule

produced by the SLS algorithm is the same as the example shown in figure 3.9.

-r
. . ..,... .* * * * ** t *
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TIME MEM ALU nMP =-

0 ta0  fi14  d 7  .:~\

1 9i5

2 b2

3 e610 h 1 7

4 C4

5 i 19 _-__.-

6

Figure 3.23. Schedule after R2 has been delayed.

MEE MEM ALU D AP

o f j4-2  d--

2 b~ 0 j 3  ~
2 2_

3 e 1 j 2

4 C4 ._,"-

jim
6 02

Figure 3.24. Complete optimal throughput schedule.

3.5.5. Summary

The running time of the SLS algorithm can be derived as follows: Step C2 uses a

combinatorial search method so in the worst case this step requires exponential time.

However the combinatorial search operates only on the set R. We shall use the notation

r

,:. -. - .. ... .. ... . . . . .. ... . .. . . . . . . . . .. . .. . . . .. .. .... .** .. . . . .. . -:.
.. S.,.,',,-e...- . 3 . 3 r. ,.... -, -. .. ,-.:" . -_-.,_. -_ U -... ,..t t_, te, _ .. t -.. *, ",Ji ,',,- "-' - - .''- "- "3 U_.. , ,_.. . . R:. _,.,,,N
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I R I to denote the size of the set R and NP (I R I) to indicate exponential complexity

over the set R.

Assuming that the size of the set C is constant, the "reservetime_slots" pro-

cedure has complexity 0 (p + I R I). However since I RI n. the complexity can be

expressed as 0 (n) + 0 (p).

. The "assign-issue_times'" procedure is similar to algorithm B and has complexity

0 0(1 Nk I). Assuming that the number of predecessors per node is bounded by a con-

stant, the "delay issuetimes" procedure has complexity O(O Rk I). Since

I INk I + IR, I n. the total complexity of steps C5-C8 is 0(n).
k 0

Taken together the complexity of algorithm C is

NP( IRI) + O(n) + O(p)

This complexity indicates that our algorithm is very efficient if either (i) the number of

nodes in multinode recurrences is small, or (ii) the combinatorial search algorithm for

r scheduling multinode recurrences is efficient. In conventional job loads, simple loops are

usually small: larger loops almost always involve nested conditional statements and

. .. hence cannot be processed by SLS. The number of nodes in multinode recurrences in a

small loop is of course also small. Therefore the contribution of the NP (I R I) term to

the complexity measure should not preclude algorithm C from being used in practice.

Aside from the NP term. the remaining complexity. 0 (n) + 0 (p). is optimal

because (i) every node must be visited at least once to generate code. and (ii) every

:* instruction cycle (every row in the MRT) must also be visited at least once. Since there

are 0 (n) nodes and 0 (p) instruction cycles, the complexity of 0 (n) + 0 (p) is clearly

minimal...

• .'p ' .. ': . -- - . . .' . .". ." , ." . ."-"-""''' -.. ' . ' .' '' ' -.' ' ' . - .- ' ' -,- '' -. . . " .",'."." - .',



82

Significantly, our algorithm is able to generate an optimal throughput schedule in

linear time if the loop is vectorizable on a conventional vector machine. If a loop is vec- :

torizable. then there are no multinode recurrences within the loop. Hence R q5,. so the

NP term vanishes in the complexity measure.

71-
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CH1APTER 4

MACHINE ORGANIZATION AND CODE GENERATION ISSUES
L

4.1. Introduction

The study of compiler code generation techniques is necessarily dependent on the .

choice of target machine model. One of the most important considerations in choosing a

target machine model is the level of abstraction. A highly abstract model is advanta-

geous in that the scheduling algorithms developed for such models are unencumbered

by implementation details. This may lead to clean theoretical results which give

*. insights to the solution of global problems. Unfortunately some of the implementation

details ignored by a highly abstract model may turn out to be critically important con-

straints or efficiently exploitable architectural features. In this thesis we have chosen to

develop scheduling algorithms based on a fairly detailed machine model in order to

t explore the relationship between machine organization. instruction set architecture. and

compiler code scheduling techniques. This chapter describes the target machine model.

discusses implementation considerations that motivated the machine organization. and

develops solutions to the practical code generation problems of register assignment and

branch handling.

The proposed target machine is a Tightly-coupled HeterogeneoW Multi roc.Wsor.

* . (THUMPER). This type of machine is characterized by the following attributes:

Tightly-coupled

System synchronization is provide by a single system-wide clock to achieve low-

overhead interprocessor synchronization. Individual processors are interconnected

by a high-bandwidth low-delay network to provide high-speed interprocessor

*. ...--...--...L. .. ... ...-... ... .---. ......-.-...: .- : ...... ... .: .: .• -...-.: .-.: ......- --
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communication.

Heterogeneous multiprocessor

A high degree of concurrency is provided through multiple processors, each of

which may be pipelined to increase performance further. Improved cost-

effectiveness is attained through the capability to mix identically replicated

general-purpose VLSI.processors and heavily pipelined special-purpose functional

units, and by the capability to parameterize both the size of the multiprocessor

system as well as the composition of the processors.

Figure 4.1 shows an example configuration of a THUMPER with three processors: an

integer arithmetic processor. a floating-point arithmetic processor, and a memory access

processor. The processors are interconnected by a crossbar network with embedded

INTEGER FLOATING MEMORY INTERLEAVED

UNIT PT. UNIT PIPELINE MEMORY

Figure 4.1. Block diagram of a THUMPER configuration.

L -
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* storage capability at each crosspoint[35]. In the following sections we discuss some of

the design considerations that lead to this machine organization.

4.2. Processors and Memory System Design

The design of processors is influenced by two conflicting requirements: low cost

S-. and high performance. In a multiprocessor organization. low cost can be achieved by

replicating identical multifunction processors. particularly using VLSI technology. On

the other hand to achieve very high performance it is usually more cost effective to use

a suite of heavily pipelined specialized functional units. A heterogeneous multiproces- ..

sor organization captures the advantage of both by incorporating distinct classes of pro-

cessors. The organization of each class of processors can be optimized to achieve max-

imum cost-performance. Additional parallelism can be provided through replication.

I In our study of code generation techniques we have found that certain constraints

on processor designs significantly simplifies and/or improves the running speed of

scheduling algorithms. Here we distinguish between explicitly-scheduled resources and

implicitly-scheduled resources. An explicitly-scheduled resource is a resource for

which contention may occur. An implicitly-scheduled resource is a resource whose

availability is guaranteed provided that its associated explicitly-scheduled resource was

available at some prior time. For example, the first stage of a linearly pipelined func-

tional unit shared by multiple processors is an explicitly-scheduled resource while all

the subsequent stages are implicitly-scheduled resources since the availability of the

first stage guarantees the availability of all subsequent stages at the proper later time.

From the point of view of code generation, explicitly-scheduled resources are the only

ones that need be considered, and we shall use the term reaowe to mean explicitly-

scheduled resources unless otherwise noted.
;; ,~.-..

o " o .
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A most important consideration is the number of resources and the time lag

between uses of those resources for each individual instruction. All such resources and

their relative time slots must be considered when scheduling each instruction. The sim-

plest case is when every instruction uses exactly one (explicit) resource. In this case

deciding whether a particular instruction can be scheduled for execution requires exa-

mining only a single variable at a single instant in time. If an instruction uses multiple

resources during different phases of its execution, then it becomes necessary to examine

multiple variables at different times to decide when an instruction can be issued

without subsequent conflict with other instructions. The need to check resources at

different times causes difficulty during the scheduling of loops because decisions made at .

the beginning of the loop must be sensitive to conditions at the end of the loop (of the

previous iteration) which are yet unknown.

In our target machine we have decided to allow only one explicitly-scheduled

resource per instruction and require that each resource be capable of accepting a new "

instruction per clock. This means that if. for an instruction such as z - x + y. the

explicitly-scheduled resource is the adder, then the register file containing x. y. and z

as well as all the interconnecting busses must all be implicitly-scheduled resources In

other words, dedicated register file ports and busses must be associated with the adder.

Furthermore, the adder itself must be a simple pipeline with no shared or looping

stages. For multifunctional processors. one resource per instruction implies that every .- "

function must take the same amount of time to flow through the pipeline, otherwise the

output bus becomes another explicitly-scheduled resource.

Another important consideration is the number of processor classes, and their

characteristics, that can execute a particular instruction. From a hardware utilization r

point of view it may be desirable to provide both a fast floating-point adder as well as . .

-.



* slower microcoded floating-point point addition on a multifunctional processor. Unfor-

tunately to utilize such a system fully the compiler must. for each floating-point add

instruction. choose between using the fast adder and possibly delaying another more

C; critical add instruction or using the slower multifunctional processor and possibly

delaying several more critical instructions of as yet unknown classs. Choices of this

~: ~: type are called global choices since one decision may impact other choices in the future. K

* In contrast. choosing among several dedicated adders of identical delay is called a local

choice since this decision has no effect on choosing a schedule time for other instruc-

tions.

* To generate high quality code, a compiler must occasionally backtrack and recon-

-sider earlier decisions. However only global choices must be reexamined. Hence, to

reduce compilation time, it is desirable to mninimiz the number of global choices that

must be made per instruction. In our target machine we have decided to partition the

processors into classes and bind every instruction to a single procesor clas& Procesors

of a given class are therefore identical and hence it is a local choice to decide which one

* to use. With this constraint the only global choice is to decide when to execute a partic-

ular instruction.

Determinacy of execution time is another important* consideration. Resolution of

conflicting resource requirements at compilation time is highly desirable to avoid the

cost, in both hardware and run time, needed for arbitration and synchronization. To

achieve this resolution, the compiler must be able to predict the exact execution time of

every instruction. Because we already restrict processors to be linear pipelines, the exe-

cution time of most instructions is completely deterministic. The time for a memory

reference, however, cannot be made deterministic because of memory bank conflicts

and/or concurrent input/output operations. We have chosen to model the memory Sys-
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tem as a set of pipelines whose length is equal to the memory reference time in clock

cycles. When bank conflicts occur. the entire machine is frozen until the conflicts are f

resolved.

4.3. Storag-Enhaced Crowba nteronnect Design

As shown in figure 4.1. the heterogeneous processors and memory pipelines are

interconnected by a crossbar with embedded storage at each crowspoint. The storage-

enhanced crossbar interconnect was chosen because it simplifies and/or solves a number

of difficult implementation and code-scheduling issues. The concept of a storage- "'

enhanced crossbar interconnect is not new, and many of its advantages have been docu-

mented[35]. We now briefly review some of these advantages.

In the previous section we discussed the importance of minimizing the number of

explicitly-scheduled resources. The crossbar is the only interconnection network that

provides dedicated busses for every processor and memory and a dedicated switch for

each possible connection. Therefore all the busses and switches are implicitly-scheduled

resources. Other interconnection schemes using shared busses and/or switches neces-

sarily introduce additional explic.cly-scheduled resources.

A similar line of reasoning leads to the decision to embed the register file within

the crossbar interconnect. In order to avoid generation of additional explicitly-

scheduled resources, a register tile port with no access conflict must be dedicated to each

processor port. As the size of a multiprocessor system increases, it becomes impractical

to implement a single centralHed multiported register file with the required number of

conflict-free ports. One solution is to decentralize the register file by distributing the

file memory into each crospoint of a crossbar interconnect.

Referring to the crossbar in figure 4.1. the register read data busses are shown

vertically while the register write data busses are shown horizontally. High write

...
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bandwidth is provided by partitioning the register file and asociating a distinct parti-

tion with the output port of each processor and memory pipeline. In effect, each output

port is connected to a separate file memory so that every processor and memory can

* simultaneously write into the register file without conflict. High read bandwidth is

provided by replicating the data within the register file once for each processor and

* * memory read port. This design allows an arbitrarily large storage-enhanced crossbar to

be constructed using two-ported random acces memories (RAM).

Replicating data to increase register file read bandwidth increases the cost of the

system but poses no problem for the compiler since the replications can be made archi-

tecturally transparent Partitioning the register file to increase write bandwidth, how-

* ever, cannot be made architecturally transparent and hence has a strong impact on code

generation. For the machine configuration shown in figure 4. 1. the architectural view of

the register file is shown in figure 4.2. assuming for this example that the RAM at each

crosspoint contains only four words. Each processor can only write into those registers

that belong to the partition corresponding to the row in the crossbar connected to that

procesr's write bus. However, since data is replicated across all register modules in a

* ~row, every processor can read registers belonging to all partitions. Although this distri- 94

buted register file architecture has implementation merits, it does introduce additional

code generation problems. We shall return to this issue in section 4.6.

* Another reason for embedding the register file within the crossbar interconnect is

to mitigate the high cost of the crossbar network in terms of chip count. Here we

muethat the physical size of a chip package is determined by the number of pins and

not by the amount of logic contained within the chip. Given that a large number of

pins are needed at each crosspoint to interconnect the two orthogonal word-wida data

buses the addition of a small RAM to each simple crouapoint switch should not
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Registers read- registers writ- registers writ- registers writ-
able by all able by integer able by able by
processors unit floating-point memory pipe-

unit line

rll rll .,.
rlO rlO,- .

r9 r9
r r8______-8

r7 r7
r6 r6
r5 r5
r4 r4 ,
r3 r3
r2 r2
rl rl
zO rO '-'. "-.

Figure 4.2. Architectural view of register file. U

significantly increase the physical chip package size. It therefore appears that storage

can be embedded within the crosbar at very low cost.

The scheduling techniques we have developed make use of the substantial local

memory within the crowbar interconnect to replace more conventional scalar and vector

register files. Moreover our techniques also use then embedded local memories to hold

prefetched data, thereby reducing the need for a data cache. In most high performance

processors. the physical space devoted to register files and caches is quite substantialIl.

By using the storage-enhanced crossbar interconnect to replace both of these, we feel

that the high cost of the crossbar interconnect can be justified in a system context.
-% ."--
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4.. Control Unit Design

The THUMPER is controlled by a single control unit and synchronized by a single

system-wide clock. This approach has a number of advantage& Using a centralized

clock and a global control unit leads to a highly deterministic system whose detailed

run time behavior can be accurately determined at compile time. The compiler can

Soptimize the code by knowing the actual behavior of the machine, instead of knowing

only the statistical behavior. Another advantage of using a centralized control unit for

a multiproceor is the elimination of run-time arbitration and synchronization over-

head for interprocessor communication.

The THUMPER uses a wide horizontal instruction format as shown in figure 4.3.

This instruction format is very similar to that of horizontal microcode. hence architec-

tures based on this type of synchronous multiprocessor organization are also called hor-

lzontal architectures(9. 30.31]. A separate field is allocated to each proc.or. plus an

" additional field for branch specification or an immediate constant. Each processor field

opcode input I input 2 result
*(specific register register register

to unit) specifier specifier specifier

INTEGER FLOATING MEMORY BRANCH SPECIFIER or
UNIT PT. UNIT PIPELINE CONSTANT VALUE •%

Figure 4.3. Horizontal instruction format-

"* i* :i .-. ....- * :.-.,* - ~ . *..
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contains an opcode specific to that processor class. Two register specifier fields are used

to address input operands resident in the register file. Another register specifier field is

used to address the result operand. Note that the input register specifier fields are large

enough to address every partition in the register file while the output register specifier

field is large enough to address only the one partition that is writable by that processor. *

We chose to use an almost purely horizontal instruction format rather than a

more vertical format because we have found that the flexibility offered by horizontal

instruction formats is essential for the exploitation of parallelism in a wide range of

application programs. As discussed in chapter 3. more highly encoded vertical instruc-

tion formats such as those generally employed by vector architectures are unable to

exploit much of the parallelism available in those program loops that involve multinode-

recurrences. Vertical instruction formats are also unsuitable for the exploitation of

parallelism available in scalar program fragments.&

The control unit is organized as a linear pipeline whose length is equal to the pro-

gram memory access time plus the time needed to decode the instruction. The program

memory is interleaved to supply one instruction per clock cycle. It is further inter-

leaved so that most of the time a branch to an arbitrary bank will experience little or

no delay. When a memory bank conflict does occur, the simplest approach is to stp the

processor until the conflict is, reoved.

We have chosen not to include an instruction cache in our proposed target .

machine. To be fast, caches must be constructed using a relatively expensive technol-

ogy. and the physical size of the cache must be kept small in order to reduce cost and

minimize the physical separation between the cache and the processor[36]. However, a

major reason for incorporating an instruction cache in a machine is to reduce the time

needed for a taken conditional branch. Therefore rather than using an instruction
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cache, we have chosen to rely on compile-time code scheduling technology to minimize

* '-.the performance impact of long branch time.

A linear instruction fetch and decode pipeline lends itself naturally to an architec-

ture with delayed branches(5. 6, 7]. Our scheduling techniques are designed to take full

advantage of relatively long delay branches, under the assumption that to achieve high

S"-clock speed it is necessary to partition the instruction fetch and decode pipeline into

S "multiple segments with fine granularity. The DTS technique performs extensive code

rearrangement to allow a sequence of delayed branches to be overlapped, thus reducing

-" the average delay of conditional branches in scalar code.

4.5. Machine Parameters

We have described an expandable multiprocessor organization and discussed the

*rationale behind some of the design decisions. The significance of this organization is

that it can be efficiently implemented using current technology and it can be completely

characterized by a small number of parameters. The ability to capture concisely all the

corstraints imposed by the machine organization has a direct impact on the develop-

ment of scheduling techniques. both in simplifying the algorithms as well as in improv-

Ing the efciency of these algorithms. This section describes each of the machine param-

eters.

The universe of instruction opcodes is given by the set F. This set of opcodes

defies the functionality of the instruction set architecture. Elements of F include the

,us-* integer and floating point arithmetic operations, logical operations. memory opera-

- tiOns. etc. The exact membership of F is a relatively low-level design issue, and is

S""beyond the scope of this thesis. We do. however, require that F include the guarded

stoze and guarded jump instructions described in chapter 2.

* p5.0

* S.. S S. . . . . . .* ~ * .* .*-5 **
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The set C defines the processor classes. An element of C can be a multifunctional

processor. such as an integer unit that can perform all the normal arithmetic and logical

functions (e.g. an ALU). Elements of C can also be unifunctional processors. such as

specialized floating point add and multiply pipelines. Since we require a disjoint parti-

tion of functionality for different processor classes, a function ft can be defined to map

each instruction opcode i onto one particular processor class.

Multiple processors of the same class can be incorporated for increased parallel-

ism. However we require that all processors belonging to a particular class be function-

ally identical. The number of replicated processing units of a particular class c is given

by u.

Since the organization of each processor is constrained to be a linear pipeline and

since every instruction is constrained to Row through every pipeline stage. the temporal

characteristics of a processor are completely specified by the number of pipeine stages.

This number is given by s. where c is a processor class. Note that by modeling the

memory system and the instruction fetch and decode process as linear pipelines, we can

define a -memory- processor class and a "branch- processor class to model the schedul-

ing constraints imposed by the operation of these resources. The parameters for these

processor clas are exactly the same as for any other processor class, namely s and u.

Pipelining within the storage-enhanced crossbar interconnect can be handled Sim-

ply by treating the interconnect pipeline as an extension of the processor pipeline, since

the resources within the crossbar are all implicitly-scheduled resource Therefore the

additional delay within the interconnect can be charged to s,.

The parameters f . u, . and s, are suflcient for describing the processing part of a

THUMPER implementation. The register file is characterized by the size of the RAM

within each crosspoint cell. Note that there is no need to specify the number of seg-

.......................... ,... .... .... ....
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ments in the register file since that is implicitly specified by the number of processors.

which is equal to T..

4.6. Register Assignment Issues

As we alluded to in section 4.3. the distributed register file introduces certain code

generation problems that do not arise in a conventional centralized register file. Refer-

ring to figure 4.2. the problem with this register file architecture is that to fetch a valueL

it is necessary to know which partition the value is in. i.e. to know which processor

generated that value. Sometimes, however, it is impossible to know at compile time

which processor will generate a particular value, as shown in the following example.

else x =b *c;
z -X +y:

If memory fetches are handled by one procesr while arithmetic operations are handled

by another processor, the value x must reside in different partitions depending on the

outcome of the if-statement. This uncertainty causes problems for the compiler when

it tries to generate code for z x X +y since the the location of x cannot in general be

* - determined at compile time. Note, however, that this uncertainty can only occur when

the basic block containing z -x + y has two predecessor blocks.

To solve this problem we have elected to constrain the compiler to use registers

only for temporaries within a tree of basic blocks. Because each basic block within a

tree (except the root) has exactly one~ predecessor block, it is always possible to identify

uniquely the register file partition that a temporary value resides in. During tree tran-

sitions all temporary values must be stored in memory. Therefore the fact that there

are multiple predecessor blocks branching to the root node of a tree does not cause any

problems.

%7
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The scheduling technique proposed in chapter 2 directly implements this idea by

representing programs as decision trees. hence register assignment with the DTS tech-

nique is straightforward. The simple loop scheduling technique proposed in chapter 3

can also implement this idea because an unrolled simple loop forms a highly skewed

decision tree. A method of register assignment for the SLS technique is discussed

below.

The example optimal throughput schedule produced by the SLS algorithm in

figure 3.24 has length I = 4. At any one time there are up to four iterations being exe-

cuted concurrently. Therefore each temporary value name shown in figure 3.24

requires four physical registers to accommodate the four distinct values that exist con-

currently. Since each instruction operand specifier must reference four different regis-

ters at different times, there is a problem with name binding.

An innovative hardware addressing scheme to solve this name binding problem

has been proposed by Rau(35]. This approach uses hardware queues with the capability

of deleting any element within the queue. Queues are used at each crosspoint of the

crossbar to allow relative register addressing. thus implementing run-time dynamic

name binding. Although elegant, the use of hardware queues with random deletion

M capability rather than RAM to implement the distributed register file significantly

increases the complexity of the system and can lead to additional delays in transferring

data through the register file. Thus this approach has a negative impact on both perfor-

mance and cost -effectiveness.

We advocate a much simpler approach that uses additional program storage space

to solve the name binding problem statically. Our solution involves unrolling the loop

I times, where I is the number of overlapped iterations. Figure 4.4 shows one iteration

of the schedule from figure 3.24. Each instruction is shown in detail to illustrate regis-
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TIME NEM ALU

0 ao - ac(c 3)

2 bo'- l(ao)

4 c 0 - node(bo) .-.

6

7

9

10 o '- data(co)
-,1 . -

12

13

14 f_____0_ fo'-.+ 3

15 go' T(fo) ____

16

17 h 0 go << 2

18

19 i 0 - Rndex(h 0)

20 jo s -R.vadue(h o) (h_")

21

22 to- ++o

23

24

25 _ _ _ _

26

27

Figure 4.4. Detailed representation of a loop schedule.
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ter assignments. The WMP processor class instructions have been omited since they are

not germane to this discussion. '.

The register names shown in figure 4.4 have been given subscripts to distinguish

among the four physical registers. Note that instructions a. f . and k reference regis- * ftt

ters with subscript 3. indicating that these values are to come from previous iterations.

The schedule shown in figure 4.4 represents the first of the four overlapped iterations.

The schedule for the remaining three iterations can be derived by successively ft" .

(i) rotating the original schedule by some multiple of p clock cycles, where p is the

initiation interval, and

(ii) incrementing the register subscripts by one. modulo 1.

Figure 4.5 shows the complete schedule with four overlapped iterations. Note that

every instruction now has a unique symbolic register address that can be mapped into a

unique physical register address Therefore the register file can be implemented using . t

an ordinary RAM.

Compared to Rau's dynamic name binding, our approach of loop unrolling to

achieve static name binding requires I times more code space per loop. However. we

believe that loop unrolling is a more cost-effective solution because it reduces the coin-

plexity of the machine. Reduced complexity allows the clock speed to be increased and

also reduces the design cost of the machine. " "t"

4.7. Architectural Coudrtoufor Delayed Branches

% The architecture of branch instructions has a strong impact on the complexity of :

code optimization techniques. The THUMPER instruction set includes delayed branches

with guard expressions as described in chapter 2. This section dLacum= some architec-

tural considerations for branch instructiom

i:: :: a .,.
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TIME MEEM ALU

!=

0 ao-arc(c 3) f 2 - 62 +it

1 S2*-T(12) k_*-ko+_ _

2 bo-- 1(ao)

3 * 3 - data(c 3) h 2 .2 << 2
4 co - node(bo) ':

5 12. RindeX (h 2 ) ____

6 2'R.vate (h 2)

7 a1 -~~c(c 0 ) f 3 4-. 3 +i 2

8 g 3 4- T(f 3 ) k2k1+ j2*"I.

iih 9 b14-"1(a) __,___)

10 eo " data(co) h 3 -3 << 2

11 c 1 - node(b 1) _,__-__

12 13 - Rindex (h 3) __.-____

13 J 3 "- R.vaue (h 3 ) _._

14 42 4- arc(c1) f0-go+13

15 go T(f 0 ) ,, k2 + ,

16 b 2  - l(a2) ,.-.._ _.

17 0" data(c 1 ) ho - go << 2

18 C .- node(b2 ) ...

19 10  R.index (h 0 )

20 jo "- R.vaLu (ho) ".-_"-)

21 a 3 - arc(C 2 ) f I - I + 0

22 ge - T(I 1 ) k 0 k + 0

23 b3 *- 1(43)

24 *2 -data(C 2 ) h, g, << 2

25 C 3 .node(b 3 ) _____

26 1 1 Rndex (h 1 ) "_"_

27 j -R.valu (h 1 ) ""')_

Figure 4.5. Complete schedule with register assignments.
V-_
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Recall that in the description of the decision tree scheduling technique in

chapter 2. guarded jumps that branch from an exterior block of a tree to the root of

another tree are scheduled in priority order just like any other instruction. The prob-

%Iem with this strategy isas follows. Suppose branches have delayk.o This means that A

the terminal branch on a path through the tree should be scheduled exactly k cycles

prior to the end of the path. However. before the path is completely scheduled. the

compiler cannot determine how long the path is going to be. Thus until after it has gen-

erated the entire path schedule, the compiler cannot determine when the terminal

branch instruction should be scheduled.

One possible solution is as follows. Once the entire path schedule has been gen-

erated, the compiler can go backward k cycles and insert the terminal branch instr-uc- %

tion. Unfortunately there is no guarantee that no other instruction has been scheduled. L
at the required functional unit. k cycles from the end of the path. In such acase the

compiler could insert the branch instruction k -i cycles prior to the end of the path and 5

delay the remaining k -1 instructions by one cycle. This solution may be acceptable if

the number of instructions that can be isued per cycle is very small, such as one

instruction per cycle.&- :
However, for highly concurrent THUMPER configurations that issue many

'a. instructions per cycle, this solution is inefficient because no other instruction can be

scheduled for the cycle devoted to the inserted branch instruction. Moreover, this solu- .

tion may introduce ineffciencies into other paths through the decision tree because the L
active code block at k -1 cycles prior to the end of one path may not be the exterior

block for that path. but instead may be aninterior block shared by several paths. In ,

this case the extra cycle introduced to accommodate the terminal branch instruction for

one path causes delays In all other paths that share the interior block into which the
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branch instruction is inserted.

Instead. we solve this problem by introducing an extra-delay parameter in branch

instructions. The extra-delay parameter specifies the number of additional cycle, that

should be added to the normal delay of the branch. The availability of this extra-delay

parameter greatly simplies the DTS technique and eliminate, performance degradation

due to insertion of. terminal branch instructions in highly concurrent THUMDPER

configurations. With this parameter. the DT3 technique simply schedules terminal

branch instructions without considering how long the path may be. Once the path has

been scheduled, the appropriate extra-delay can be computed and written back into the

branch instruction. Naturally, if it turns out that the terminal branch instruction is

law than k cycles from the end of the path. then the path must be padded with the

* appropriate number of no-operation instructions.2

The implementation of the extra-delay parameter is straightforward. The branch

target addres is saved in a register along with the value of the extra-delay parameter.

r The extra-delay is counted down by hardware, and the branch target address is

transferred into the program counter when the extra-delay count becomes mo.

* . The extra-delay parameter also simplifies the simple loop scheduling technique

described in chapter 3. The SLS technique schedules branches strictly based on resource

* - availability and data-dependency constraints, without consideration f or the initiation

2 interval. Therefore the loop-completion branch can be scheduled more, or fewer, than

k cycles from the end of the modulo reservation table. 1

* .. If the loop-completion branch is scheduled more than k cycles from the end of the ~

MRT. the extra-delay parameter can be used to increas the branch delay. If the loop-

completion branch is scheduled fewer than k cycle. from the end of the MRT. the solu-

tion is to concatenate one or more copies of the schedule until the loop-completion
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branch is no fewer than k cycles from the end of the MRT, and then use the extra-

delay parameter as appropriate. Note that multiple copies of a complete schedule such

*, as the one shown in figure 4.5 can be concatenated without change. Therefore. once the

SLS algorithm has found a valid schedule for a loop. the branch issues can be quickly

resolved.

"" .. .

• o" U.-
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CHAPTER5

N, - CONCLUSIONS

5.1. Summary of Results

We have shown that the performance of scalar code can be improved through the

use of an integrated design philosophy in which the machine organization, instruction

, set architecture, and compiler code generation techniques are developed simultaneously.

By concentrating our research efforts on the general nature of scalar code. we have

" "insured that our techniques are applicable to a wide range of applications. including job

loads that are dominated by nonnumerical and symbolic computations. The results of

this research suggests that cost-effective techniques can be used to achieve signiLcant

speedup in the context of general purpose computer system&

Chapter 2 described the decision tree scheduling technique for handling conditional

branch intensive scalar code. The DTS technique is a very general and robust code Sen-

eration heuristic that efficiently utilizes concurrency in the form of parallelism and

pipelining to reduce the average execution time of a tree of basic blocks. A key concept

L, • of the DTS technique is the use of guarded jump instructions to allow overlapped exe-

cution of multiple conditional branches. thus reducing the average delay of a condi-

tional branch below that which can be provided by htardware. We have shown that the

* DTS technique, when combined with judicial code replication. achieves signifcant levels .

of speedup on a variety of example program modules.

P~i For a sufficiently large decision tree and a suffkcAently parallel machine, the DTS

technique with guarded jumps and stores and selective code replication produces . .

S" schedules that approach the theoretical speedup achievable on a highly parallel, no

* .:.~,. V.' ,'
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overhead datalow machine. Thus the DTS technique can be viewed as a static dataflow

technique that captures many of the advantages of datadow processing without incur-

ring the inevitable overhead associated with dynamic datalow processing.

Chapter 3 focuses on the problem of code generation for recurrence-intensive loop

code. With the exception of job loads dominated by numerical computations, the use of

linked data structures is pervasive in most general job loads. The traversal of linked -

data structures give rise to numerous recurrences through memory, reducing the C.

effectiveness of vector and multiprocessor architectureL Horizontal architectures ofer

improved performance and cost-effectiveness: however horizontal architectures require

sophisticated code generation techniques. ...

The the simple loop scheduling technique described in chapter 3 generates optimal..-.

throughput schedules for innermost loops without nested conditional statements. The V

SLS technique is an adaptation and extension of the theory of optimal design of

hardware pipelines We have shown that the SLS algorithm produces optimal

throughput scedules in minimal time. i.e. the complexity of the SIS algorithm itself is

optimal.

Architectural support for the proposed scheduling techniques is the subject of

chapter 4. In this chapter we describe a highly concurrent parametric machine model :

that was used to develop the DTS and SLS techniques. We discuss the rationale behind

the design decisions that lead to the choice of machine organization and architecture.

We also discuss several related practical code generation problems including register

assignment isues.

In conclusion, this thesis has

(i) pointed out some of the principle problems that must be solved in order to achieve

high-speed general-purpose computing.

-°-

". . ° . ]

,% %. "oo "



105L

P S (ii) proposed new code optimization techniques for solving some of these problems.

and '

NOii proposed a machine organization that supports these code optimization techniques

- and can be implemented using current technology.

*5.2. Suggestions for Fture Researh

Although we have addressed some of the key problems of high-speed general-

purpose computing, solutions to many more problems are necesry before a practical

* implementation of a computer system employing the techniques proposed in this thesis

can be realized. Some of these problems are listed below.

Multilevel memory hierarchies are a standard feature of modern general-purpose

- computer systems. Throughout our research we have ignored the problem of page-fault

handling. Since our techniques are targeted at large-scale application program that

require considerable computing and memory rsurces, a high-performance solution to

the page-fault problem is essential in order to handle such applications.

Modern programming methodologies promote the use of many small procedures.

We have ignored the problem of speeding up procedure calls in our research. The DTS

i4 technique can be easily extended to convert procedure calls to in-line expansion of the

~ called procedure. at the cost of further increasing the amount of replicated code. How-

ever, it is much more desirable if in-line expansion can be limited only to those exeu-

* tion paths of a procedure that have a high probability of being taken in the context of
UV

the specific procedure call site. The use of inteligent procedure expansion techniques is

expected to be crucial to the achievement of high performance for object-oriented pro-

gramming methodologies that rely on extensive use of numerous small procedures.
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As an extension of the guarded store and jump features. some jump instructions

can actually be entirely eliminated by making subsequent guard expressions more com-

plex. This possibility poses an interesting new optimization problem with a variety of

tradeoffs, including code space and rescheduling opportunities. Further, recheduling

opportunities arise from attempting to use more detailed information about segment-

by-segment pipeline operations that may relax dependency constraints on scheduling.

Finally. throughout this research we have concenitrated exclusively on optimiza-

tion techniques that exploit static information about the behavior of programs. It is

well-known that much more precise information. and therefore superior optimization '

results. can be achieved if the dynamic behavior of a program is taken into account. We

believe that static and dynamic optimization techniques are complementary. and the

best solution in a system context should involve a combination of both *types of tech-

nliques.

4r.
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